CHROMATOGRAPHIC ANALYSIS OF ELASTOMER ANTIDEGRADANTS AND ACCELERATORS

P. A. D. T. VIMALASIRI, J. K. HAKEN* and R. P. BURFORD
Department of Polymer Science, University of New South Wales, P.O. Box 1, Kensington, N.S.W. 2033 (Australia)

(Received June 28th, 1984)

CONTENTS

1. Introduction 303
2. Vulcanization accelerators 304
3. Antidegradants 309
4. Extraction of antidegradants and accelerators 309
5. Column chromatography 320
6. Paper chromatography 321
7. Thin-layer chromatography 323
8. Gas chromatography 334
9. High-performance liquid chromatography 338
10. Size exclusion chromatography 344
11. Summary 350
References 351

1. INTRODUCTION

The identification of accelerators and antidegradants in rubber mixtures presents some notable difficulties. These are principally due to the relatively small quantity of the materials contained in the mixtures, and to the presence of many other materials, either naturally occurring in the rubber or added during its compounding. Such materials can interfere with the desired identification, especially when traditional methods such as "colour reactions" or fluorometric examinations are used. Often accelerators and antidegradants are difficult or impossible to recover from vulcanizates. They may be altered in the course of mixing and vulcanization, and more completely during subsequent ageing and extraction.

Even in the most favourable cases, the examination of total solvent extracts is uncertain or negative. This is true even if carried out by means of sensitive instrumental analytical methods, i.e. ultraviolet (UV) and infrared (IR) spectrophotometry. The spectra obtained are generally very complex and represent the superposition of the spectra of each component, or show the spectra of the components present in greater concentration, which in many cases are not those of interest.

Therefore, as a primary goal it is necessary to achieve the best possible separation of the various components. Considering the low concentrations of the components under examination, their low thermal stability and ease of oxidation, methods based on fractionation by means of solvent or distillation, even if carried out under high vacuum, are not appropriate.

Throughout the last few decades analysts have employed an ever increasing array of techniques to attack the problem of rubber analysis. The advent of chromatographic techniques has provided analysts with a very sensitive simultaneous separatory-identification technique that has enhanced their ability to determine many minor constituents such as accelerators and antioxidants present in vulcanizates.

This review will attempt to cover all relevant chromatographic work pertaining to the analysis of accelerators and antioxidants used in elastomeric compositions.

Periodic reviews ${ }^{1-20}$ entitled Rubber have appeared in Analytical Chemistry and cover the analysis and characterization of rubber by physical, chemical and spectroscopic methods. Methods for the identification and determination of rubber and additives in rubber have been included, but the analysis of additives alone have not.

A number of reviews have appeared in the past but these now largely do not represent current practice or developments. The reviews include:
(i) Analysis of rubber and plastic chemicals by liquid chromatography-spectroscopy (1982) ${ }^{21}$.
(ii) Chromatographic detection of accelerators and antioxidants (1966) $\mathbf{2 2}^{\mathbf{2 2}}$.
(iii) Chromatographic techniques for analysis of rubber (1980) ${ }^{22}$.
(iv) Analysis of antioxidants in polymers by liquid chromatography (1980) ${ }^{22}$.
(v) Analysis of antioxidants in polymeric materials (1968) ${ }^{25}$.
(vi) Gas chromatographic application to rubber analysis (1977) ${ }^{26}$.
(vii) Thin-layer chromatographic identification of rubber compounding ingredients (1969) ${ }^{27}$.

Several minor reviews ${ }^{28-33}$ have also been published between 1959 and 1981.
The second edition of the book by Wake ${ }^{34}$ published in 1969 and another book by Crompton ${ }^{35}$ give a good account of available analytical techniques of elastomer analysis. The 59th chapter, Rubber and Rubber Products Analysis, in the book by Welcher (1963) ${ }^{36}$ also provides a useful collection of literature. Haslam and Willis ${ }^{37}$, in their book Analysis of Plastics (1965), include some material applicable to rubber.

2. VULCANIZATION ACCELERATORS

Accelerators are of great economic importance to the rubber industry. They not only reduce vulcanization times from hours to minutes, but they also have important effects on the physical characteristics of rubber stocks in which they are used. These influences on physical properties are important in relation to the final use of the rubber products.

Accelerators in general are made up of several chemical classes as shown in Table 1.

The aldehyde amine condensation products are not usually simple chemical compounds and therefore are not easy to detect or identify. However, they appear to be of diminishing commercial significance, as reflected by the reduction in associated analytical citations. Chemical changes in accelerators during vulcanization have been studied in detail by Campbell and Wise ${ }^{38,39}$, using UV spectrophotometry. Mercaptobenzothiazole (MBT) and its derivatives (MBTS, ZMBT, etc.) probably cannot be distinguished from each other in a vulcanizate since all forms may be present in a vulcanizate originally containing only one of them ${ }^{40}$. The same reasoning

TABLE 1
MAJOR CLASSES OF ACCELERATORS
Type

N-Tert-butyl-2-benzothiazole TBBS
sulphenamide

N-2,2,3-Tetramethyl-butyl-2-benzothiazole sulphenamide 2(2,6-Dimethyl-4-morpholino-thio)-2-benzothiazole sulphenamide

N, N '-Hexamethylene-2-
HBS
benzothiazole sulphenamide

$\mathrm{N}, \mathrm{N}^{\prime}$-Diisopropyl-2-
benzothiazole
sulphenamide

$\mathrm{N}, \mathrm{N}^{\prime}$-Dicyclohexyl-2- \quad DCBS

benzothiazole
sulphenamide

TABLE 1 (continued)

| Type | Formula | Chemical name | Abbreviation |
| :--- | :--- | :--- | :--- | :--- |
| Thiuram | | | |
| sulphides | | | | $\mathrm{C}^{\mathrm{CH}_{3}}$

Thioureas

Tetramethyl thiourea
TMTU

Trimethyl thiourea

$\mathrm{N}, \mathrm{N}^{\prime}$-Diethyl thiourea
DMTU

Ethylene thiourea
EU

Thiocarbanilide
TC

TABLE 1 (continued)

Type	Formula	Chemical name	Abbreviation
Dithioc bamate		Piperidine pentamethylene dithiocarbamate	PPD
		Zinc diethyl dithiocarbamate	$\begin{aligned} & \text { ZDC, } \\ & \text { ZDEC } \end{aligned}$
		Sodium diethyl dithiocarbamate	SDC, SDEC
		Zinc ethyl phenyl dithiocarbamate	ZEPC
	$\left(\begin{array}{l} \mathrm{C}_{2} \mathrm{H}_{5} \\ \mathrm{C}_{2} \mathrm{H}_{5}^{\prime} \end{array} \mathrm{N}_{4}^{\mathrm{S}}-\mathrm{C}-\overline{\mathrm{s}}\right)_{4} \mathrm{Se}^{4+}$	Selenium diethyl dithiocarbamate	-
		Zinc dibenzyl dithiocarbamate	-
		Zinc dimethyl dithiocarbamate	ZDM
		Zinc dibutyl dithiocarbamate	ZBDC
		Sodium pentamethylene dithiocarbamate	SPD
		Zinc pentamethylene dithiocarbamate	ZPD
		Lead pentamethylene dithiocarbamate	LPD
		Copper pentamethylene dithiocarbamate	CuDD
		Cadmium pentamethylene dithiocarbamate	CPD
	$\left(\begin{array}{l} C_{2} H_{5} \\ C_{2} H_{5}^{\prime} \end{array} \mathrm{N}^{\mathrm{S}}-\mathrm{C}-\overline{\mathrm{s}}\right)_{4} \mathrm{Te}^{4+}$	Tellurium diethyl dithiocarbamate	TDEC

TABLE 1 (continued)

Type	Formula	Chemical name	Abbreviation
Aldehyde amines	Hexamethylene tetramine (hexamine)	HMT	
Ethylidene aniline	EA	Butryldehyde aniline	BA

Guanidines

Diphenyl guanidine
DPG

Triphenyl guanidine
TPG

Di-o-tolylguanidine DOTG

o-Tolyl biguanidine
OTBG

Xanthates

Zinc isopropyl xanthate
ZIX

Sodium isopropyl xanthate SIX

Zinc butyl xanthate
ZBX
applies to dithiocarbamates and to tetraalkyl thiuram sulfide ${ }^{41-43}$. Sulphenamide ${ }^{28,39}$ accelerators are also usually completely decomposed to MBT and the amine that was originally combined in the sulphenamide. Guandines are the only class of accelerator that can be detected unchanged. Therefore, the identification of an accelerator system resolves itself into a search for degradation fragments.

When a rubber compound is to be reproduced and the general composition has already been determined, identification of an existing single unknown accelerator can often be made from fragment analysis. The optimum level of accelerator can be independently evaluated using cure rheometer information. However, when two or more accelerators are employed, cure experiments designed to optimize levels become too numerous, and in this case quantitative analytical results are necessary.

3. ANTIDEGRADANTS

By adjusting the various factors making up the curing system of a given stock, it is possible for a rubber compounder to obtain good ageing properties. This requires a proper balance between the amount of sulphur, time of cure, type of accelerator, and the combination of activating materials used. Whilst ageing performance can be improved by using suitable cure systems, the primary retention of properties is made possible using antidegradant chemicals.

In general, antidegradants consist of two major chemical classes i.e., secondary aryl amines and substituted phenols. These can be further classified as shown in Table 2.

The amine type of antioxidants are much more effective in prolonging the life of rubber stocks than the substituted phenols, but during oxidation they form yellow to dark brown compounds which stain materials with which they come into contact 28. The substituted phenols are particularly free of this disadvantage, but they are much less effective in their protective action ${ }^{28}$.

The antioxidants are fairly stable compared with accelerators, but precautions must be taken to minimize oxidation during extraction, otherwise oxidation products will interfere with the subsequent analysis.

4. EXTRACTION OF ACCELERATORS AND ANTIOXIDANTS

The separation of non-polymeric organic additives from the rubber matrix is the initial step of chromatographic analysis. Most separations that have been reported concern solid-liquid extraction, since the insoluble nature of the rubber matrix precludes the possibility of using the more efficient liquid-liquid extraction.

Quantitative solvent extractions are normally carried out using Soxhlet and Underwriters extraction techniques. Methods for antioxidant extraction from polymers are summarized by Wheeler ${ }^{25}$. The subsequent analyses employed have some degree of versatility, being also useful for other compound ingredients. This topic has also been discussed and reviewed by Schroeder ${ }^{32}$, and much of the relevant information on the extraction of accelerators and antioxidants is summarized in Table 3.

It is necessary in most instances to use a solvent system where the maximum amount of organic additives and the minimum amount of the polymer is extracted.
ANTIDEGRADANTS ASSOCIATED WITH VULCANIZATION

Ketone (acetone) amine condensates
(A) Dihydroquinolines, primary arylamine reaction products,

1. Polymerized 1,2-dihydro-2,2,4-trimethylquinoline (PDTQ)
2. 6-Dodecyl-1,2-dihydro-2,2,4-trimethylquinoline (DTQ)
3. 6-Ethoxy-1,2-dihydro-2,2,4-trimethylquinoline (DTEQ)
(B) Secondary diarylamine reaction products,
4. Diphenylamine-acetone
5. N -Phenyl-2-napthylamine-acetone
Aldehyde-amine-condensates
6. Aldol-1-naphthylamine
7. Butyraldehyde-aniline
Alkyl-aryl secondary amines
8. $\mathrm{N}, \mathrm{N}^{\prime}$-Diphenyl-ethylenediamine
9. N, N - Diphenyl -propylene diamine
10. N, N-Di-a-tolyl-ethylene diamine
Primary arylene diamines
11. 2,4-Diaminotoluene (TDA)
12. 4,4'-Diamino-diphenylmethane
TABLE 2 (continued)

Class	Compound	Structure
$V I$	Hindered phenols 1. Al̈kylated phenol 2. 2,6-Di-tert.-butyl-4-methylphenol(2,5-di-tert.-butyl-p-cresol) (DBCP, BHT) 3. 2,6-Di-tert.-butyl- α-dimethylamino-4-methylphenol 4. 2,6-Di-tert.-butyl- α-methoxy-4-methylphenol 5. Mixed tert.-butyl- and α-octyl-phenols 6. Styrenated (α-phenylethylated) phenol 7. Mixed 2-tert.-butyl-4-methoxyphenol and 3-tert.-butyl-4-methoxy phenol (BHA)	 $\mathbf{R}_{\mathbf{1}}=$ tert.-alkyl or α-phenylethyl $\mathbf{R}_{2}=$ methyl, substituted methyl, or tert.-alkyl $\mathrm{R}_{\mathbf{3}}=$ alkyl or H
VII	Hindered thio-bis-phenols 1. 4,4'-Thio-bis(6-tert.-butyl-2-methylphenol) (TMTPB) 2. 4,4'-Thio-bis(6-tert.-butyl-o-cresol) 3. 4,4'-Thio-bis(6-tert.-butyl-3-methylphenol) 4. Thio-bis(di-sec.-amylphenol)	 $\mathbf{R}_{\mathbf{1}}=$ tert.-butyl or sec.-amyl $\mathbf{R}_{\mathbf{2}}=$ methyl in $\mathbf{3}$ or $\mathbf{2}$
VIII	Hindered bis-phenols (A) Ortho, ortho' 1. 2,2'-Methylene-bis(6-tert.-butyl-4-ethylphenol) 2. 2,2'-Methylene-bis(6-tert.-butyl-4-methylphenol) 3. $2,2^{\prime}$-Methylene-bis($6-\alpha$-methylcyclohexyl-4-methylphenol)	 $\mathbf{R}_{1}=$ tert.-butyl or α-methylcyclohexyl $\mathbf{R}_{\mathbf{2}}=$ methyl or ethyl
	(B) Para, para' 1. 4,4'-Bis(2,6-di-tert.-butylphenol) 2. 4,4'-Methylene-bis(6-tert.-butyl-2-methylphenol) 3. 4,4'-Butylidene-bis(6-tert.-butyl-3-methylphenol) 4. 4,4'-Methylene-bis(2,6-di-tert.-butylphenol) 5. Polybutylated p, p^{\prime}-isopropylidenephenol	 $\mathbf{X}=$ alkylidene or may be absent $\mathbf{R}_{1}=$ tert.-butyl $\mathbf{R}_{\mathbf{2}}=$ methyl or tert.-butyl in 2 and 2^{\prime}, or methyl in positions 3 and 3^{\prime}

> (C) Unclassified polymeric phenols
6-Alkyl-2-methylphenol-ketone condensate
6-Alkyl-2-methylphenol-ketone
Butylated butylidene-bis-phenol
Butylidene-bis(dimethylphenols)
Buthylene-bis(dimethylphenols)
Methylene-bis(3-isopropylphenol)
Trimeric alkylphenol-formaldehyde condensate
Polyhydroxy phenols

1. $2,5-\mathrm{Di}$-tert.-amylhydroquinone
\pm

Sulphur compounds
2-Mercaptobenzi
\star
TABLE 3
METHODS OF ACCELERATORS AND ANTIDEGRADANTS EXTRACTION

Substances extracted	Extracting solvent(s)	Details	References
Accelerators and antioxidants	Ethanol-1 N hydrochloric acid	Refluxed for 2 h and then steam distillation of amines from the extract	44
Antioxidants	Acetonitrile	Finely divided sample is shaken with acetonitrile for 30 min , and cooled to $-20^{\circ} \mathrm{C}$ to separate oil	45
Accelerators and antioxidants	Methyl ethyl ketoneethanol (3:1)	10 g Sample extracted in Soxhlet	46
Antioxidants and stabilizers	Acetone	For 16 h Soxhlet extraction in the dark under inert atmosphere	47
Accelerators	Isopropanol	Finely divided sample (3 g) extracted with 5 ml of isopropanol by infusion for 1 h at room temperature	48
Accelerators and antioxidants	Acetone	For 8 h in Soxhlet	49,50
Accelerators and antioxidants	Benzene	For 8 h in Soxhlet	51,52
Antioxidants and stabilizers	Ether	2 Days extraction in Soxhlet extraction apparatus	53
Antioxidants and stabilizers	Benzene, acetone, n-heptane	24 h Extraction, with benzene or n-heptane, or 8 h extraction with acetone	54
Antioxidants	Acetone	24 h Extraction in Soxhlet apparatus in the dark under inert atmosphere	55
Antioxidants	Tetrahydrofuran or chloroform	24 h Extraction in Soxhlet apparatus	56
Antioxidants and stabilizers	Acetone	4 h Extraction in Soxhlet under inert atmosphere, extract was concentrated and oligomers were precipitated with methanol	57
Antioxidants and accelerators	Benzene	Dissolving the uncured polymer in benzene (solvent) and precipitating the polymer with methanol (non solvent)	58

Antioxidants 1. Methanol
59

60

61
$62-66$
66
67
68
69
70
71,7
73

1. Methanol 2. Chloroform or carbon tetrachloride	1. Extracting with methanol for 4 h or $1-2 \mathrm{~h}$ for rapid reflux extraction 2. Shaking with solvent for a short time at temperature (for vulcanizates only)
3. Isopropanol Chloroform	3. Standing overnight in isopropanol Heat at $50^{\circ} \mathrm{C}$ for 3 h in a closed container
Hexane Toluene	Heat at $50^{\circ} \mathrm{C}$ Rater
Refluxion to dissolve the polymer in toluene and precipitate with methanol 95\% Methanol Extraction at $70^{\circ} \mathrm{C}$ under nitrogen atmosphere	
	For 16 h extraction in an extraction cup

Phenolic antioxidants
and cresols
Cresols
Antioxidants
Antioxidants
p-Phenylenediamine
\quad derivative
Antioxidants
2,6-Di-tert.-butyl-p-cresol
Ketone-amine condensates
Antioxidants
Phenolic antioxidants

Various solvents are specified for each polymer type, so that only qualitative analysis of polymer composition is needed before a suitable extraction liquid can be chosen. Where the identity of the elastomer is unknown, a more universal extraction medium may be satisfactory.

Hilton ${ }^{74}$ extracted a variety of raw polymers and cured stocks with up to 18 different solvents or solvent combinations for periods ranging from 0.5 to 64 h . Ethanol (95%) was found to be the most versatile solvent but a minimum of 16 h was required for essentially complete extraction. This solvent has several attributes:
(i) It is quite easily removed from the polymer extract because of its low boiling point.
(ii) Most polymers are completely insoluble in ethanol.
(iii) Direct UV analysis can be carried out on the extract.

Parallel experiments ${ }^{74,75}$ using Soxhlet and the Underwriters extraction apparatus showed the latter to be more effective during short periods because of the faster rate of solvent recycling. In an overnight run, however, the extraction was complete in both cases for most of the elastomer samples. Other extraction apparatus described include tightly capped bottles in which the sample and solvent are heated under pressure ${ }^{76}$, Wiley extractors ${ }^{67}$ and flasks in which the sample is merely steeped in solvent ${ }^{68}$. In order to increase the efficiency of extraction, surfactants and ultrasonic devices have been used ${ }^{77}$. An apparatus has been patented ${ }^{78}$ where reproducible solubility data for several samples can be obtained simultaneously. A rapid method ${ }^{79}$ has also been reported for determining the acetone extractable material in natural rubber (NR) and oil extended NR using a high-speed "Polytron" high-frequency generator.

Yushkevichyute and Shlyapnikov ${ }^{80}$ have described an apparatus for the sublimation (in vacuo) of several antioxidants present in polymers. Using temperatures of $61-100^{\circ} \mathrm{C}$, they were able to achieve satisfactory separation from polymers with molecular weights up to 50,000 . In a later publication ${ }^{55}$, the same workers reported the extractive separation of certain antioxidants from polymers with distilled water at $75^{\circ} \mathrm{C}$ under a nitrogen atmosphere.

McSweeney ${ }^{81}$ has described a micro-scale procedure for the rapid extraction of compounding ingredients such as accelerators and antioxidants in the rubber using thermal extraction procedures followed by thin-layer chromatographic (TLC) analysis.

Difficult polymers to analyse, because of their insolubility, are polyolefins. The British Standard method ${ }^{54,55}$ favoured by some workers, involves dissolution of polymer in boiling toluene under reflux, followed by precipitation of the high-mo-lecular-weight fraction with ethanol. The filtrate then contains the low-molecularweight organic additives (when toluene and ethanol soluble) and some low-molecu-lar-weight "wax" which normally requires painstaking ${ }^{61,82}$ removal. Spell and Eddy^{73} considered this procedure too time-consuming. They have studied the extraction of phenolic antioxidants from polyethylenes and find that the required extraction time at room temperature varies linearly with polymer density and particle size and also with the nature of the extraction solvent. They concluded that if polymer is powdered to 50 mesh, 3 h shaking in a wrist-action shaker is sufficient to recover 98% of the antioxidant from the polymer of any density. In support of these findings some correlation has been found between the density of polyethylene and its perme-
ability ${ }^{83,84}$ to solvents. The techniques applicable to polyolefins are largely applicable to elastomers due to similar difficulties with the solubility of some types and to the common nature of certain additives.

In conclusion it is quite difficult to conduct extraction techniques quantitatively due to decomposition and loss of additives including antioxidants and accelerators, during extraction ${ }^{85,86}$. In a related work, Crompton ${ }^{87}$ determined amine-type antioxidants in polymers using a 1.5 -h toluene extraction, refluxing under a nitrogen blanket. Under these conditions no oxidation, or decomposition of the antioxidants occurred, the procedure was demonstrated by separation of N, N-di- β-naphthyl- p phenylenediamine from its oxidation product which is frequently formed during processing or extraction.

An increase in the surface are of polymer sample to be extracted greatly facilitates the rate of solvent extraction. Attempts to increase the polymer surface areaweight ratio before extraction have included the use of ball mills and Wiley cutting mills ${ }^{64,60,86}$, microtomes ${ }^{88}$ and grinding ${ }^{89}$ with solid carbon dioxide.

Schroeder ${ }^{32}$ reported that boiling acetone is a good solvent for extracting antioxidants and accelerators from rubbers and vulcanizates, but warned of complications due to stabilizer rearrangements and decomposition. Thus, although oxidation of polymer additives during extraction may occur, there exists a danger that crushing the polymer prior to extraction may lead to a sequence of reactions which affects the chemical structure of the inhibitor. Mechanical degradation of polymers takes the form of chain rupture leading to macroradicals. During cutting at low temperatures Pazowyi et al. ${ }^{90}$ found radical concentrations related to the area of the new surfaces. In the presence of inhibitors reactions between macro radicals (\mathcal{R}) and inhibitor (I) may occur in the absence of oxygen. As a consequence reaction products of the intermediate inhibitor radical are to be expected
mun $\rightarrow 2 \dot{R}+2 I \rightarrow 2 R+\dot{2} I \rightarrow I-I$
In the presence of oxygen the probability of reaction of the macro radicals with the inhibitor system is increased considerably, particularly if phenolic or amine antioxidants are present.

Some of the antioxidants listed in Table 4 are so volatile ${ }^{74}$ that direct determination by sublimation ${ }^{66}$ is possible. Thus a separation by distillation of the 2,6 -di-tert.-butyl-4-methylphenol from its dimer deactivation product at $100^{\circ} \mathrm{C}$ was suc-

TABLE 4
VOLATILITY OF ANTIOXIDANTS ${ }^{32}$

Antioxidant	Vapour pressure (mmHg)	Loss of weight (\%) at $150^{\circ} \mathrm{C}$
2,6-Di-tert.-butyl-p-cresol	22.15	100
2-Benzyl-6-tert.-butyl-p-cresol	1.83	100
2,2'-Methylene-bis-6-tert.-butyl-p-cresol	0.169	$19-28$
Diphenylamine	7.52	100
N-iso-Propyl-N'-phenyl-p-phenylene-	0.59	$40-53$
diamine	0.032	$2-3$

cessful and provided evidence for the isomerization of primarily formed phenoxy radicals to oxybenzyl radicals and their recombination to dioxydiphenyl ethane as shown below.

More commonly, undesirable losses also occur during distillation or evaporation of extracts. When a chloroform solution of 2,6-di-tert.-butyl-4-methylphenol was evaporated in a fume cupboard, 63% of the solid was lost; simple open storage of the solid led to 0.75% loss after $24 \mathrm{~h}^{32}$.

For quantitative estimation of highly volatile compounds, particularly when the type of decomposition products are of interest, enrichment by chromatographic processes should be considered. Polymer separation can be achieved using size exclusion chromatography. By suitable selection of the pore size of the separatory media additives can be separated from polymers in a form suitable for further analysis.

During dissolution, stabilizer degradation does not occur and the polymer is subsequently preferentially precipitated. One should consider solution-precipitant effects on stability, especially of the reaction products of stabilizers or their fragments, with the polymer. Such reaction products have been both determined and isolated with PVC, polyethylene and natural rubber.

Phenolic antioxidants or their decomposition products in part were recovered from polypropylene after oxidative degradation ${ }^{91}$. When rubber vulcanizates containing aromatic amine antioxidants are thermally oxidized amine-rubber derivatives which are resistant to hydrochloric acid extraction are formed ${ }^{92,93}$. Similarly, hydrolysis restistant derivatives are formed between thiol antioxidants and stabilizers ${ }^{94}$ and acrylonitrile-butadiene-styrene (ABS) polymer, particularly during high-shear processing.

A simple and comprehensive approach to the identification of the accelerators and antioxidants used in rubber products was described by Brock and Louth ${ }^{44}$. This unusual procedure utilized the tendency of accelerators to decompose during extraction from compounded stocks. The accelerator fragments were isolated using distillation and liquid-liquid extraction procedures given in Fig. 1. The accelerator fragments were identified and the original accelerators used were determined from a knowledge of the decomposition behaviour of known compounds. The antioxidants and guanidine type accelerators are recovered unchanged and can be identified by their UV absorption characteristics and colour reactions.

The separation of additives from mixtures after extraction from the polymer is necessitated by the lack of sufficiently specific methods for the identification of accelerators and antioxidants in the presence of other components. To keep the analytical scheme as simple as possible it is desirable to eliminate this stage. Most separatory techniques, however, also provide a clue to the identity of the components, and in a good scheme of analysis the separatory process forms an important part of

Fig. 1. Separation of non-volatile, neutral, basic, and acidic material ${ }^{44}$.
the actual identification procedure. Of all the well-known separatory techniques reported liquid-liquid extraction seems to be the least frequently employed. It has been used mainly to separate antioxidants and accelerators from other organic additives and low-molecular-weight polymer fractions ${ }^{38,39,44,95,96}$.

In most commercial rubber stocks, extender oils are used to facilitate processing of the compound. Being in high concentrations they interfere with the analysis of antioxidants and accelerators which are present in much lower concentrations. Here the use of a highly polar extractant such as acetonitrile is recommended ${ }^{45}$. The oil in the acetonitrile extract is precipitated at $-20^{\circ} \mathrm{C}$ thus reducing the ratio of oil to antioxidant from an initial value of $30: 1$ to approximately equal amounts. In the ASTM TLC method ${ }^{59}$, removal of extender oil by pretreatment with light petroleum ether, or by a column chromatographic technique is recommended.

5. COLUMN CHROMATOGRAPHY

Although column chromatography is probably the most exacting chromatographic technique to perform, it has the advantage of being able to handle relatively large samples ($50-5000 \mathrm{mg}$). To save time, preliminary TLC experiments aimed at determining suitable adsorbents and development solvents for achieving a satisfactory separation should be conducted. Suitable conditions can then usually be translated to column chromatography without difficulty. The use of fraction collectors and automatic effluent monitoring devices also reduce time and effort involved in column chromatography.

To identify fractions in which the separated components are concentrated, one can laboriously examine all fractions with IR or UV spectrophotometry. However, by monitoring the column effluent with UV absorption, conductivity, and other monitors, much effort is saved. Some have the disadvantage of being too specific for use with mixtures of compounds of unknown types. Most general purpose monitors are those based on the measurement of the refractive index and thermal effects.

Successful separation of antioxidants from each other was achieved on columns of activated silica by Crompton ${ }^{35}$ using benzene as the developing solvent. Adsorbents other than silica gel have also been used for the separation of additives, with Fiorenza et al. ${ }^{97}$ separating antioxidants and plasticizers in rubber extracts by use of a neutral alumina column. The effluent was monitored with an LBK UV detector at 254 nm . After eluting the fractions exhaustively with carbon tetrachloride, carbon tetrachloride-benzene (50:50), benzene, benzene-ethanol ($50: 50$) and finally ethanol, each component separated was identified by UV or IR spectrophotometry.

Crompton ${ }^{82}$ recommends the use of a silica gel column on which the components of the polymer extract can be separated by use of a similar succession of increasingly polar solvents. The effluent was monitored with a JOEL JLC 2A recording chromatograph, which separates by measuring the thermal changes caused by components moving along the column.

A synthetic rubber adsorbent has been used by Berger et al. ${ }^{98}$ to separate antioxidants. The stationary phase (Silastic 181) was applied to the column as a suspension in light petroleum and the separation carried out with a mobile phase of acetone-water ($25: 75, \mathrm{v} / \mathrm{v}$). Campbell and Wise ${ }^{60}$ used an alumina column to separate phenolic antioxidants with chloroform followed by water-ethanol (10:90). A Gilston Medical Electronics UV scanner was used to monitor the effluent stream.

Another analytical separatory scheme based on column chromatography was reported by Parker ${ }^{99}$, where aliquots of the sample solution were chromatographed on γ-alumina columns, each with a different mobile phase. From the position of the components on the various columns after a suitable elution time and from the colours obtained with specific detecting reagents, almost unambiguous identification of antioxidants was claimed.

Bellamy ${ }^{100}$ discussed in detail the identification of antioxidants in rubber vulcanizates. Samples extracted were first chromatographed on an alumina column. Separated compounds were detected on the column by UV light and/or by extruding the moist column from the tube and streaking a narrow band down the side of the column with various chromatographic developing reagents such as sulphuric acid, 1% ammonium vanadate in sulphuric acid, 1% potassium dichloromalate in sul-
phuric acid or nitric acid-sulphuric acid (1:3, v/v). Amino and phenolic antioxidants were generally easily eluted from an alumina column with ethanol-benzene (1:99, v / v).

Mann ${ }^{101}$ extended the work of Bellamy et al. ${ }^{98}$ by using IR and UV spectrophotometer for the examination of individual components of vulcanizate extracts (mainly accelerators and antioxidants), after separating from all other compounds present by column chromatography. It was shown contrary to the work of Bellamy, that weak absorption on alumina is not a characteristic feature of antioxidants. Some of the compounds are relatively strongly adsorbed on alumina and require desorption with ethyl alcohol-benzene mixtures nearer to 5:95 (v/v) rather than the 1:99 (v/v) mixture as proposed by Bellamy.

Mann ${ }^{101}$ concluded that although IR methods offered a reasonable solution to the problem of the qualitative analysis of vulcanizates for accelerators and antioxidants, it was unlikely that they would be suitable for quantitative work. UV spectrophotometry was suggested to be more amenable to quantitative analysis and more sensitive for accelerator and antioxidant determination.

Parker and Berriman ${ }^{102}$ examined the chromatographic behaviour on silica gel-Celite packed columns of 32 accelerators and four antioxidants with methyl chloride as solvent. The separated compounds were identified by viewing the developed column in UV light and by application of various chromatographic streaking regents to the extruded chromatographic column. It was claimed that silica gel- Celite mixtures as adsorbents have certain advantages over alumina as advocated by Bellamy ${ }^{100}$ and by Mann ${ }^{101}$. It has weak adsorptive power for accelerators and antioxidants, which permits the chromatography of labile compounds without decomposition. Silica gel-Celite was also claimed to be more suitable for the application of a wide variety of streaking reagents, and is more amenable to the quantitative recovery of adsorbates from the column.

A number of colour reactions which have been reported in the literature are shown in Table 5. Many of these are also suitable for application as streaking reagents. Table 6 lists the streaking reagents used for the detection of compounds.

6. PAPER CHROMATOGRAPHY

Three advantages of paper chromatography over column chromatography are: (i), It is simpler to use; (ii), smaller sample sizes can be used, and (iii), the \boldsymbol{R}_{F} values are more reproducible. This last advantage is particularly important since it permits some identification of the separated components. Table 7 lists the more important paper chromatographic contributions reported in the literature.

Wheeler ${ }^{25}$ reviewed the available literature on the application of paper chromatography in the examination of polymers for antioxidants. It was indicated that because most antioxidants are highly polar, efficient separation on normal paper can only be achieved using highly polar mobile phase. Consequently reversed-phase paper chromatography ${ }^{107,113-115}$ or acetylated papers ${ }^{22,109-111}$ are usually used to reduce the effect of tailing.

The detecting reagents used are either diazotized amines ${ }^{22,109}$ which form coloured products with amines and phenols, or oxidizing agents, since the oxidation products of antioxidants are generally highly coloured ${ }^{104,109,111}$. Sometimes the

TABLE 5
SOME COLORIMETRIC REAGENTS REPORTED IN LITERATURE ${ }^{102}$

Reagent	Compounds reacting
$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}+1 \% \mathrm{NaOH}-\mathrm{HNO}_{3}$	MBT, thiuram
Aq. $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ in acetone	MBT
AuCl_{3}	DPG
Copper oleate in CHCl_{3}	Dithiocarbamates
Ditto, after $\mathrm{Na}_{2} \mathrm{SO}_{3}$	Thiuram sulphide
Cobalt oleate in benzene	DPG, DOTG, o-tolyldiguanide dithiocarbamates, MBT, TMT
CuSO_{4} aq. + acetone, etc.	Dithiocarbamates, thiurams, etc.
Phenolphthalein	DPG
HCl and phenol or α-naphthol	Diazoaminobenzene
Diazotized p-nitraniline	Aromatic amines
$\mathrm{NaOH}+$ diazotized p-nitraniline	Aromatic amines
Diazotized sulphanilic acid	Aldol naphthylamine
Acetic acid or $\mathrm{HCl}+p$-dimethyl amino benzaldehyde	1-Naphthyliminoaldol, PBN
p-Phenylene diamine, $\mathrm{Br}_{2}+\mathrm{NH}_{3}$	1-Naphthyliminoaldol, thiuram
p-Phenylene diamine $+\mathrm{DeCl}_{3}$	Primary and various amines
FeCl_{3} or CuCl_{2}	Aldol-naphthylamine
Aq. $\mathrm{NaOCl}+$ phenol (3\%)	Aldehyde-aniline condensation products
$\mathrm{SnCl}_{4}+$ amyl nitrite in benzene	Diarylamines and naphthylarylamines
$\mathrm{SnCl}_{4}+$ benzotrichloride in ethylene dichloride	Diarylamine-ketone condensation products
SnCl_{4} benzoyl peroxide in benzene	Aryl substituted p-phenylene diamines
$\mathrm{SnCl}_{4}+$ bromine in ethylene dichloride	Aniline-acetone condensation products, etc.
$\mathrm{H}_{2} \mathrm{SO}_{4}+$ trace HNO_{3}	Diphenyl and dinaphthyl p-phenylene diamines
$\mathrm{H}_{2} \mathrm{SO}_{4}$	
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SeO}_{3}$	
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}$	
Concentrated HNO_{3}	Reactions of 40 commercial antioxidants
Arsenic acid in $\mathrm{H}_{2} \mathrm{SO}_{4}$	investigated
Ammonium molybdate in $\mathrm{H}_{2} \mathrm{SO}_{4}$	
$10 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	
HNO_{3}	
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$	
$0.5 \% \mathrm{MoO}_{3}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$	Reactions of eight commercial antioxidants
Acetic acid	investigated
Acetic acid + bromide	
1% Ammonium vanadate in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$	
1% Potassium dichromate in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ Nitric acid sulphuric acid (1:3)	Reaction with nine commercial antioxidants recorded

sample solution is treated with the colouring reagent first and the coloured products are then chromatographed. Multiple spots can be obtained from a single antioxidant in this manner as has been demonstrated by Auler ${ }^{50}$.

The work of $\mathrm{Zijp}^{109-111}$ is a major contribution to paper chromatographic methods, a comprehensive scheme for the systematic identification of accelerators and antioxidants being devised. Acetylated paper and different solvent systems were
used for different classes of compounds. Identification was based mainly on the R_{F} value of each constituent and on the colour produced by various spray reagents. Auler ${ }^{50}$ in a detailed survey on the analysis of accelerators and antioxidants was able to reproduce Zijp's work, and in addition applied the same solvent systems to circular paper chromatography with satisfactory results.

Williamson's ${ }^{22}$ important work is also based on that of Zijp, but different solvent systems were employed. Before chromatography, sample extracts were evaporated to dryness at $80^{\circ} \mathrm{C}$ and the residue dissolved in 96% ethanol. Controlled additions of ethanol, strontium chloride and ammonia solutions were made to precipitate fatty acids and other impurities which were then removed by filtration and the clear filtrate examined for accelerators and antioxidants by paper chromatography.

Delves ${ }^{116}$ has described a procedure based on paper chromatography for the identification of nitrogen containing antioxidants in synthetic aviation turbine oil formulations which, with minor modification, could be applied to the analysis of antioxidants in polymers. The most succesful solvent system was dipropylene glycol as the stationary phase and cyclohexane saturated with dipropylene glycol as the mobile phase.

The number of antioxidants now commercially available is so great that no single R_{F} value, even in conjunction with a variety of spray reagents, is likely to be specific enough to identify any component unambiguously. The analyst is therefore required to consider the use of multiple solvent sytems to achieve the necessary specificity. The use of paper chromatography therefore becomes too lengthy a procedure for routine use. Consequently, more recent workers have employed TLC.

7. THIN-LAYER CHROMATOGRAPHY

TLC is an inexpensive and simple method for determining rubber processing ingredients such as accelerators and antioxidants. It is a much more rapid technique than paper chromatography and allows more corrosive spray reagents to be used. Although the reproducibility of R_{F} values is generally poorer than in paper chromatography ${ }^{115}$, Delves ${ }^{116}$ and other workers ${ }^{115-122}$ have shown that reproducibility can be improved if adequate attention is applied to all of the experimental variables. The more modern technique, high-performance liquid chromatography (HPLC) does not have the disadvantages of TLC, but it requires a longer analysis time and more expensive, immobile instruments.

Wheeler ${ }^{25}$ has reviewed the literature on TLC for antioxidant analysis. Gedeon et al. ${ }^{117}$ recently surveyed the available TLC method for rubber compounding analyses. Table 8 summarizes the more important reports of the use of TLC in the literature.

Schroeder ${ }^{32}$ has reported that the greatest success obtained in stabilizer analysis has been with TLC. Good separation efficiency, high separation speed and a great variability of the detection possibilities are the most important advantages of this technique. Variation of carrier material, mobile phase, spray reagents and multistage processes also offer possibilities for the separation of complex stabilizer systems.

TLC separation processes for antioxidants as described by Van der Neut ${ }^{175}$ provide a good example. Antioxidants are first separated using benzene on silica gel into six groups of increasing R_{F} values, and afterwards are separated selectively with
TABLE 6
COLOURS OF STREAKS OBTAINED WITH VARIOUS REAGENTS ${ }^{102}$

Compound	Sodium hypochlorite in water ($30 \%, w / v$)	$\begin{aligned} & \text { Aqueous } \\ & \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \\ & (5 \%, w / v) \end{aligned}$	$\begin{aligned} & \mathrm{Bi}\left(\mathrm{NO}_{2}\right)_{2} \\ & \text { in } 0.5 \mathrm{~N} \\ & \text { nitric acid } \\ & (5 \%, \mathrm{w} / \mathrm{v}) \end{aligned}$	Bismuth nitrate in 0.5 N acid after reduction	$\begin{aligned} & \text { Aqueous } \\ & \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \\ & \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ & (5 \%, w / v) \end{aligned}$	Aqueous lead acetate after reduction	$\left(\mathrm{NH}_{4}\right) \mathrm{VO}_{3}$ in $60 \% ~ w / w$ sulphuric acid ($1 \%, w / v$)	Mixture of conc. HNO_{3} (1 vol.) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (3 vols.)	Selenium dioxide in conc. sulphuric acid $(0.5 \%, w / v)$
DOTG	dark reddishbrown	nil							
DPG	dark reddishbrown	nil							
TPG	reddishbrown	nil							
TC	pale orange on standing	light brown	yellow	yellow	nil	nil	nil	pale violet fades rapidly	nil
MBT	nil	faint yellow	bright chrome yellow	bright chrome yellow	lemon yellow	lemon yellow	faint green	nil	faint yellow
MBTS	nil	nil	nil	brigth chrome yellow	nil	lemon yelow	nil	nil	nil
TMTD	nil	bright yellowgreen	pale lemonyellow	pale lemonyellow	nil	nil	v. pale green to faint blue	nil	nil

TABLE 7
SEPARATION OF ACCELERATORS AND ANTIOXIDANTS BY PAPER CHROMATOGRAPHIC METHODS

Substances separated	Stationary phase	Mobile phase	Derivative or treatment	Detection	Comments	Ref.
Accelerators and antioxidants	Paper	-	Coupled with p-diazobenzene sulphonic acid	Coloured products	-	103
Antioxidants	Paper	Acetic acid-water (1:4)	-	$\begin{aligned} & 0.2 \% \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}- \\ & 0.1 \% \mathrm{~K}_{2} \mathrm{Fe}(\mathrm{CN})_{6} \\ & (1: 1) \end{aligned}$	Blue spots	104
Amine antioxidants	Paper	Acetic acid-water-acetone $(3: 6: 1)$	React with 3-methyl benzo-thiazolin-2-one hydrazone $\mathrm{HCl}-\mathrm{FeCl}_{3}$ before chromatography	Coloured products	-	105
Antioxidants	Paper	Not given	Heated under reflux with HCl	Sulphanilic acidsodium nitrite or ninhydrin	-	106
Aromatic amines and phenothiazine antioxidants	Dipropylene glycol on paper	Cyclohexane saturated with dipropylene glycol	-	UV light or p-nitrobenzenediazonium fluoroborate	$\begin{aligned} & 112 \mu \mathrm{~g} \\ & \text { detected } \end{aligned}$	107
Antioxidants	Whatman acetylated paper No. AC82	Ethanol-benzene-acetylacetone ($10: 10: 1$)	Antioxidants extracted from accelerators with ethanol	Potassium-p-diazobenzene sulphonate	Ascending against the grain (5th)	108
Antioxidants	Acetylated Whatman No. I	Not reported	Extract into ethanol, add $4 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}, 20 \%$ SrCl_{2} and filter	-	-	71
Urea-based stabilizers	Paper	Propanol-methanolwater (2:1:1)	-	p-Dimethylamine benzaldehyde	-	89
Basic antioxidants	Acetylated Whatman No. 1	Ethanol (96\%)-benzene (1:1)	-	Tollen's reagent, Millen's Reagent		$\begin{aligned} & 109 \\ & 110 \end{aligned}$
Phenolic antioxidants	Acetylated Whatman No. 1	Butyl acetate-pyridinemethanol water (1:5:1:3)		Tollen's reagent, Millen's Reagent		111
Basic antioxidants	Schleicher and Schull 2043b/45ac	Ethanol (96\%)-benzene (1:1)		1\% Diazobenzene sulphonic acid (DBS) in 25% aqueous acetic acid or 20 mg of DBS in 5 ml of 0.1 M $\mathrm{NaOH}+5 \mathrm{ml}$ of ethanol (96\%)		50

Tollen's reagent, Millen's Reagent		50
Phosphomolybdic acid, vanillin or potassium ferricyanide		
-	Ascending technique in atmosphere from 50% acetic acid	112
Ammonical silver nitrate	Descending run (4h)	$\begin{aligned} & 113 \\ & 115 \end{aligned}$
	-	115
4\% Sodium hypochloride	Ascending method.	
5\% Bismuth nitrate $+0.5 \mathrm{NHNO}_{3}$	$\begin{aligned} & \text { Descending } \\ & \text { method. } \end{aligned}$	
Ethanol carbon-disulphidetriethylamine mixture followed by copper solution of ninhydrin		49
0.5\% Diazotized sulphanilic acid in alcohol-water$8 N \mathrm{HCl}(1: 1: 2)$	-	51
Benzoyl peroxide	Ascending method	52

Phenolic antioxidants	Schleicher and Schull 2043b/45ac	Butyl acetate-pyridine-methanol-water (1:5:1:3)
Antioxidants	Paper	Chloroform-acetic acid (99:1)
Butylated hydroxy anisole	7\% liquid paraffin	Light petroleum
Catechols	Whatman No. 1 impregnated with formamide + $\mathrm{H}_{3} \mathrm{PO}_{4}$ dimethyl formamide or liquid paraffin	(a) Isopropyl ether, (b) chloroform, (c) heptane, (d) heptane-benzene (1:1), (e) methanol (80%)
Guanidine accelerators	Whatman No. 1 $\mathrm{pH}=4$	Water saturated butanol
Thizole type compounds and derivatives of MBT	Whatman No. 1 $\mathrm{pH}=10$	Water saturated butanol
Thiurams and dithiocarbamates	Whatman No. 1	Butanol saturated with $0.5 N \mathrm{HCl}$
Phenyl 1-naphthylamine and phenyl-2naphthylamine	Whatman No. 1	Ethanol
p-Phenylenediamine derivatives	Whatman No. 1	Ethanol-benzene

SEPARATION OF ACCELERATORS AND ANTIDEGRADANTS BY TLC

Substances separated	Stationary phase	Mobile phase	Detection and spray reagents	Refs.
Phenolic antioxidants	Silica gel G.	Methanol-cyclohexane (1:24)	30\% Molybdophosphoric acid + ammonia vapour	61
Antioxidants	Not reported	Acetic acid-diisopropyl ether (1.5:98.5)	20\% Molybdophosphoric acid + ammonia vapour	123
BHT	Silica gel	Chloroform	20\% Molybdophosphoric acid + ammonia vapour	124
Phenolic antioxidants	Polyamide powder	Methanol-water (3:2) or methanol- CCl_{4} (1:9)	Diazotized sulphanilic acid	125
Antioxidants	Polyamide powder	Methanol-acetone-water (6:1:3)	Diazotized sulphanilic acid or molybdophosphoric acid + ammonia vapour	126
Antioxidants	Kieselgel G	-	α, α^{\prime}-Diphenyl- β-picryl hydrazyl (free radical)	63
Antioxidants	Alumina $+5 \%$ Plaster of Paris	Light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)dioxane (10:1)	5\% Ethanol, phosphomolybdic acid	127
Antioxidants	Silica gel	Acetone, chloroform, benzene, carbon tetrachloride or binary mixture	-	128
Antioxidants	(1) 10% starch in polyamide powder	Methanol-acetone-water (3:1:1)	-	129
	(b) $\mathbf{1 0 \%}$ PVC in polyamide powder	Light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)-benzene-acetic acid-DMF (40:40:20:1)	-	
Antioxidants	Silica gel	$\begin{aligned} & \text { Light petroleum (b.p. } 40-60^{\circ} \mathrm{C} \text {)-ethyl } \\ & \text { acetate }(9: 1) \end{aligned}$	-	81
Sulphenamide accelerators	Kieselgel GF 254	(a) Light petroleum (b.p. $40-60^{\circ} \mathrm{C}$); (b) toluene-ethyl acetate; (c) light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) triethyl amine (3:1)	The amine residues were identified as their fluorescent 4-chloro-7-nitro-2,1,3- oxa-diazole (NBD-Cl) derivatives	130
Accelerators and antioxidants	Silica gel	(a) Benzene-ethylacetate-acetone (100:5:2) (b) Toluene-ethyl acetate-ammonia (98:2:0.1)	0.2% 2,6-Dibromo- p-benzoquinone-4chloriamide in ethanol	131
Antioxidants	Whatman KC 18R-reversed-phase	(a) n-Heptane-ethyl acetate $(70: 30)$ (b) Tetrahydrofuran 0.02 M NaCl -acetonitrile (5:42:53)	(a) Sulphanilic acid followed by NaOH solution (b) Sodium borate buffer	117
Antidegradants	Silica gel $200-600 \mu \mathrm{~m}$ ($30-70 \mathrm{mesh}$)	(a) Heptane-ethylacetate (95:5) (b) Cyclohexane-diethylamine (75:25) (c) Toluene n-heptane (50:50)	(a) For amine-type antidegradants, diazotized sulphanilic acid (b) For phenolic antidegradants, 0.5% ferric chloride followed by NaOH	59

Accelerators	Silica gel G (Merck)	Benzene-ethylacetate-n-butanol (50:1:1)	(a) Dioxane; (b) palladium chloride; (c) phosphomolybdic acid	132
p-Phenylene diamine antidegradants	Silica gel G, silica gel H and alumina GF_{254}	(a) Isopropanol-chlorobenzene waterammonia (25\%) ($52: 33: 10: 5$) (b) Water-n-butanol-acetic acid (50:40:10) (c) n-Heptane ethyl acetate $(100: 20)$ (d) Benzene ethyl acetate acetone (100:5:2)	(a) p-Diazobenzene sulphonic acid 0.1% in 25% acetic acid (b) 2,6-Dichloro-p-benzoquinone-4chloroimide 0.2% in ethanol (c) Benzoyl peroxide 4% in benzene (d) Sodium nitrite, 10% in water, acidified with HCl (e) Formaldehyde solution 40% with sulphuric acid (1:4) (f) Cobalt (II) chloride $\left(\mathrm{CoCl}_{\mathbf{2}} \cdot \mathbf{6 H} \mathbf{2} \mathrm{O}\right)$ 2% in water	133
Antioxidants	Silica gel	(a) Isopropanol-chlorobenzene-water25\% ammonia (52:33:10:5)	p-Diazobenzene-p-benzoquinone-4chlorimide, 0.2% in methane)	134
Antioxidants	Silufol UV $\mathbf{2 5 4}^{\text {-Silica gel }}$	(a) Benzene-hexane (50:50); (b) Benzene-diethylether (60:40) (c) Benzene-ethanol (95:5)	(a) Hexacyano ferrate (II) hexacyano ferrate (III) regaent (b) (Acidic solution of potassium permanganate	47
Accelerators and antioxidants	Silica gel (Wakogel B-5)	(a) Chloroform-benzene (10:9) (b) Ethanol	Formalin-sulphuric acid (1:4)	135
Accelerators	Silica gel G $\mathbf{2 5 4}$	(a) Light petroleum (b.p. $30-40^{\circ} \mathrm{C}$)-diethyl ether (110:20) (b) Benzene ethyl acetate-acetone (100:7:2) (c) Cyclohexane (d) Toluene-ethylacetate-ammonia (100:5:0.1) (e) Cyclohexane-diethyl amine (75:25) (f) Chloroform-benzene (100:90) (g) Acetone-ammonia (100:1)	(a) Iodoplatinate solution (i.e. 3 ml of 10% platinum chloride mixed with 97 ml of aqueous potassium iodide) (b) Dibromo benzoquinone chloride 1% solution in methanol (c) Sodium hypochloride, 4\% solution in water (d) 1% Sodium bicarbonate solution	148
Thiuram and dithicarbamate accelerators	Silica gel	Benzene ethyl acetate	3\% Aqueous cupric sulphate	136
Accelerators and antioxidants	Silica gel	(a) Light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) (b) Light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) + ether (60:40)	2,6-Dibromo-p-benzoquinone-4-chlori- mine	81
Amine type antioxidants	Silica gel	(a) Benzene acetone-conc. ammonia $(100: 5: 0.1)$ For two dimensional TLC cyclohexaneacetone conc. ammonia (100:5:0.1)	4\% solution of benzoyl peroxide in benzene	137

TABLE 8 (continued)

Substances separated	Stationary phase	Mobile phase	Detection and spray reagents	Refs.
Phenolic antioxidants	Silica gel G	Benzene	2.34% sodium tetraborate $+0.33 \%$ NaOH aqueous solution followed by	138
Thiazole type accelerators		Benzene ethyl acetate-acetone (100:5:1)	0.1% 2,6-dichloroquinone chlorimine in methanol.	
Thiazole type compounds		Benzene-ethyl acetate acetone (100:5:1)	$4 N \mathrm{HCl}, 0.5 \%$ ninhydrin in ethanol containing 10% acetic acid and 0.5% cadmium acetate	
Sulphenamide		n-Butanol-water-formic acid (5:1:1)	5% Bismuth nitrate in $1 N$ nitric acid ninhydrin	
Guanidines		Acetone $+1 \%$ conc. ammonia	4\% Sodium hypochloride	
Antioxidants and stabilizers	Kiesel gel GF $_{254}$ (Merck)	Benzene-ethyl acetate-acetone (100:5:2)	2,6-Dichloro-p-benzoquinone-4-chlorimine	139
Antioxidants	Silica gel G + Silicayl G $+5 \%$ Dow silcone (reversed phase)	(a) Ethanol-water (3:1) (b) Cyclohexane-methanol (50:1)	30% Phosphomolybdic acid in ethanolwater mixture	140
Accelerators and antioxidants	Silica gel (No. 13181) with fluorescent indicator	(a) Benzene ethylacetate (95:5) (b) Benzene (c) n-Heptane-ethylacetate (d) Acetone	2,6-Trichloro-p-benzoquinoneimine, 2,6-trichloro-p-benzoquinone chlorimine	58
Phenolic antioxidants and their oxidation products	Silica gel layers with gypsum binder	Hexane-ethyl acetate (9:1)	3.5-Dichloro-p-benzoquinonechlorimide or molybdophosphoric acid (for phenols) with 2,4-dinitrophenylhydrazine (for quinones) and with Fe (II) $\mathrm{NH}_{4} \mathrm{SCN}$ (for peroxide)	141
Antioxidants	Silica gel G (activated at $120^{\circ} \mathrm{C}$ for 0.5 h) (gypsum bound 0.3 mm thick)	(1) Benzene-ethyl acetate (98.5:1.5) (2) Toluene-propanol (88:12) (3) Benzene-light petroleum (b.p. 60 $80^{\circ} \mathrm{C}$) mixture (4) Cyclohexane-benzene-methanol (88:10:2)	Methanolic 3,5'-dibromo-p-benzoquinonechlorimine or methanolic iodine and 3,3'-dimethylnaphthidine	142
Antioxidants	Silica gel G	Cyclohexane-ethyl acetate (1:1) and (17:3)	Diazotized-4-nitroaniline or diazotized 2,4-dinitrophenylhydrazine	143
Phenolic antioxidants		Hexane-benzene (1:3) or hexane benzene-methanol (15:29:6)	$0.5 \% 3,5$-Dichloro-p-benzoquinonechlorimine in isopropanol	
Amine antioxidants	Silica gel G (0.25 mm thick)	Pentane diethyl ether (10:1)	1\% Ethanolic-4-dimethylaminobenzaldehyde or 0.5% 4-nitrobenzenedi-	144

			azonium fluoroborate solution in 5% acetic acid solution
Iodine vapour or methanolic iodine so-			
BHT			

TABLE 8 (continued)

Substances separated	Stationary phase	Mobile phase	Detection and spray reagents	Refs.
Phenolic antioxidants	Polyamide-silica gel (8:15) (0.25 mm)	1:4 mixture of anhydrous acetic acid with $\mathrm{CHCl}_{3}, \mathrm{CCl}_{4}$ or benzene	Ammonical AgNO_{3} solution	162
BHT	Silica gel (0.5 mm layer)	Hexane ethyl acetate (10:1)	3,5-Dichloro-p-benzoquinonechlorimine	163
Phenolic antioxidants	Silica gel (0.5 mm) activated at $105^{\circ} \mathrm{C}$ for 1 h	Chloroform	10\% Ethanolic molybdophosphoric acid	164
Antioxidants	Kieselgel H -magnesium silicate (9:1)	Chloroform-methanol-aq. ammonia (13:7:1) and chloroform-acetone-acetic acidwater (10:4:2:)	-	165
BHT, BHA	Silica gel	Hexane	Folin-Ciocalteu reagent	166
Antioxidants	Kieselgel HF $\mathbf{2 5 4}$	Hexane-ethylmethyl ketone-butyl ether (34:7:6)	$0.65 \% \mathrm{FeCl}_{3}-6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in 1 N HCl and heated at $40^{\circ} \mathrm{C}$ or 0.25% of $2,2^{\prime}$-bipyridyl and 0.1% of FeCl_{3}. $6 \mathrm{H}_{2} \mathrm{O}$	167
Antioxidants	Kieselgel G (0.3-0.55 mm thick)	Benzene-light petroleum (b.p. $30-50^{\circ} \mathrm{C}$) (7:3) or benzene-light petroleum (b.p. $50-60^{\circ} \mathrm{C}$)-acetic acid (7:3)	2,2'-Diphenyl-1-pirylhydrazyl, 3,5-di-chloro-p-benzoquinonechlorimine and $\mathrm{K}_{2} \mathrm{PtI}_{5}$	168
Antioxidants	Silica gel	Benzene	1\% Ethanolic linoleic acid, exposed to UV radiaton, sprayed wityh 0.1% N, N-di-methyl-p-phenylenediamine in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COOH}-\mathrm{H}_{2} \mathrm{O}$ (5:5:1)	169
BHT	Alumina	2,2,4-Trimethylpentane-ethylether (9:1)	Iodine vapour	170
Antioxidants	Silica gel (Merck)	Cyclohexane diethyl ether (4:1)	0.01% methanolic 1,1-diphenyl-2-picrylhydrazyl	171
Antioxidants	Silica gel (0.25 mm layer)	Heptane-benzene (7:3)	7 g of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{SO}_{4} \mathrm{FeSO}_{4} \cdot \mathbf{6} \mathrm{H}_{\mathbf{2}} \mathrm{O}$ in $\mathbf{5 0}$ ml of $10 \% \mathrm{aq} . \mathrm{NH}_{4} \mathrm{SCN}$ acidified with 0.5 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$.	172
Antioxidants	Silica gel	CHCl_{3}-acetic acid	20\% Molybdophosphoric acid	173
Antioxidants	Silica gel G impregnated with 1,2-bis-(2-aminoethoxy)-ethane- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetraacetic acid (disodium salt)	Benzene-chloroform-polyoxyethylene glycol 1000 ($50: 25: 6$) and diisopropyl ether-anhydrous formic acid-water (297:23:10)	-	174
1,4-Phenylenediamine derivatives	Silufol (activated at $100^{\circ} \mathrm{C}$ for 1 h)	n-Hexane-ethanol or n-hexane-ethanol 0.1% triethylamine in varying ratios	Iodine vapour	119

another nine eluent systems and identified using four spray reagent systems. This scheme is comparable with that devised for the identification of metals via groups. Rueda and Fernandez ${ }^{176}$ also developed an analytical scheme for identification of twenty common antioxidants using TLC. Newly developed antioxidants can be easily inserted into these schemes. However, the success of this system depends to a large extent on the reproducibility of the R_{F} values, and the authors do not describe their experimental procedure.

In contrast, Crompton ${ }^{35,81}$ provided an excellent account of the experimental TLC examination of polymer additives. A 1% solution of the sample was applied as a continuous band along the bottom of two $20 \times 20 \mathrm{~cm}$ plates, one of silica gel G254 (Merck) and the other silica gel GF254 containing a fluorescent indicator. After development, the plates were examined with radiation at 254 or 366 nm so that any substances on the plate which absorb radiation at wavelengths greater than 230 nm would appear on the fluorescent silica gel as dark areas on a blue fluorescent background. Any substance which itself is fluorescent appears on the non-fluorescent plate. After the position of the substances revealed have been marked, the plates were sprayed with aggressive spray reagents to reveal any additional components. Further identification was achieved by spraying additional plates with more specific reagents and by simultaneously analysing known antioxidant standards on the chromatogram. Crompton reported that many commercially available grades of silica contain traces of organic impurities which interfere by reacting with the spray reagent or by absorbing the UV or IR. These effects can be avoided, however, by first developing the plate in a highly polar solvent which moves the impurities to the solvent front. The plate can then be redried and used for the analysis of polymer extracts.

Kreiner and Warner ${ }^{138}$ have described a useful TLC procedure for the identification of antioxidants and accelerators in which solvent systems giving the greatest range of $R_{\boldsymbol{F}}$ values are used. The developing distance in all cases was 15 cm to give additional space as well as separation, since a large number of samples were considered in certain groups. Indicating reagents giving a wide range of colours were chosen to permit identification of the compound, in many instances by both colour and travel distance. Most of the colours will vary somewhat depending upon the conditions of time after indication. Many satisfactory indicating reagents, other than those used by these workers, are available.

Simpson and Currel ${ }^{139}$ used TLC in the determination of additives such as antioxidants and accelerators. Comparatively small samples of polymer materials are required, and by means of the techniques described it was possible to identify additives in extracts containing several different components. The method can be used to detect additives in low concentration i.e. $1-10 \mu \mathrm{~g}$ per sample, and both qualitative and quantitative determinations of greater accuracy are possible. Slonaker and Sievers ${ }^{61}$ and Hoggon et al. ${ }^{63}$ reported similar work and were able to detect between 300 and 900 ppm of antioxidants in polymers.

Millingen ${ }^{48}$ applied TLC successfully to the analysis of accelerators in unvulcanized rubber compounds by introducing a new spray reagent. Higgins and McSweeney ${ }^{130}$ developed a TLC method for identification of sulphenamide accelerators by mean of the NBD-Cl derivative of amine residues. Gedeon et al. ${ }^{117}$ recently reported a reversed-phase C_{18} adsorbent for reversed-phase TLC analysis of antioxidants.

8. GAS CHROMATOGRAPHY

The attraction of gas chromatography (GC) lies in its ability to simultaneously separate, and estimate sub-milligram quantities of complex mixtures, and it would therefore seem to be the complete answer to the problems of additive analysis. More recently the method has been extended to the analysis of high boiling and thermally unstable compounds, including rubber antioxidants and accelerators. The developments include the use of GC columns containing low levels of thermally stable liquids and highly inert supports which has allowed the range of analysis of high-boiling mixtures to be greatly extended. Highly reactive compounds can often be analysed with on-column injections in all-glass systems. An enormous amount of GC data which has been published over the last few years refer to antioxidants and accelerators, some reports being listed in Table 9. This table shows that many of the works do not represent current practice particularly with regard to the stationary phases used.

There are, however, serious limitations to the GC method. Day-to-day reproducibility of GC is less satisfactory with most instruments when operated at high temperatures and retention varies considerably with the condition of the column at such temperatures.

Since many antioxidants and accelerators are of low volatility ${ }^{25}$ low stationary phase loadings are used to reduce retention times to reasonable values. This leads to large areas of uncoated solid support which may lead to bonding with phenols and amines on the column, resulting in distortion of peaks and lengthening of retention times. There are, however, measures which can be taken to meet these difficulties. Relative retention times are more reproducible than unadjusted retention times and non-volatile components can be converted into more volatile derivatives such as trimethylsilyl ethers ${ }^{186,204,208}$, methyl ethers ${ }^{147}$ or trifluoroacetates ${ }^{203}$ which also helps to reduce bonding to columns. The solid support can also be treated (for example with hexamethyl disilazane) to reduce the number of active sites on the column available for bonding ${ }^{187}$, or inactive supports are freely available.

With the use of high temperatures or temperature programming coupled with higher carrier-gas flow-rates and low stationary phase loadings it may be possible to chromatograph relatively high-molecular-weight substances. Knight and Siegel ${ }^{185}$ and Crompton ${ }^{82}$ have been able to chromatograph the antioxidant 1,3,5-trimethyl-2,4,6-tri(3,5-di-tert.-butyl-4-hydroxybenzyl)benzene, which has a molecular weight of 775 (vapour pressure 0.014 mm at $180^{\circ} \mathrm{C}$) with a retention time of less than 10 min . The first report where GC was used for amine-type antioxidant analysis was by Wise and Sullivan ${ }^{182}$. For quantitative analyses, a known concentration of an internal standard expected to elute near the unknown, was added to the acetone extract of the raw or vulcanized rubber. A temperature range of $220-310^{\circ} \mathrm{C}$ with an Apiezon L grease column is suitable for all the common amine stabilizers. Good separation of many amines is obtained for identification purposes, while some phenols can also be determined. Dual-column operation and a sensitive detector are essential for this type of work. Apiezon L^{182} was found to be a suitable stationary phase while the now obsolete alternate materials Dow Corning 701 silicone fluid and butanediol were too volatile at the maximum operating temperature of $310^{\circ} \mathrm{C}$. Dimethyl polysiloxane rubbers did not exhibit as high a degree of resolution as Apiezon L. It was found
TABLE 9
SEPARATION OF ANTIDEGRADANTS AND ACCELERATORS BY GC

Substances separated	Stationary phase	Column temperature (${ }^{\circ} \mathrm{C}$)	Other details	Refs.
Phenolic antioxidants	5\% SE-30 on 80-90 Anakron adsorbent	290	H_{2} carrier gas	81
BHT	25\% LAC 2R/466 (adipate ester) +	135	H_{2} carrier gas, flame ionization detection,	177
$\begin{aligned} & \text { 2-(2-Hydroxy-5-methyl-phenyl) } \\ & \text { benzotriazole } \end{aligned}$	$2 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ on chromosorb		(FID), error $\pm 1 \%$	
BHT, 2,6-di-tert.-butyl phenol, 2,4-tri-tert.-butyl phenol, diphenyl amine	10\% Apiezon N on celite 545	164	He carrier gas, FID, $10^{-3} \mathrm{M}$ No interference from other substances	178
BHT and PBN	Apiezon		FID	179
Halogenated bisphenols	10% DC-710 Silicone oil on chromoport XXX 80-100 mesh	225-250	12×0.5 in O.D. glass column, carrier gas $\mathrm{He}, 130 \mathrm{ml} / \mathrm{min}$	180
Low-boiling phenols	Capillary column coated with 10% xylenolphosphate	125	FID	181
Amine antioxidants	20\% Apiezon L on $30-60$ mesh chromosorb W.	300	2×0.5 in O.D. column	182
Phenols and 5-tert.-butyl derivtives	Silicone oil 550 carbowax 400 (3:2)	200	Mean deviation, 0.4\%	183
Phenols and cresols	$5 \%(\mathrm{w} / \mathrm{w})$ of various phosphate esters of phenols	110	$120 \mathrm{~cm} \times 4.5 \mathrm{~mm}$ column	184
Phenolic antioxidants	(a) 20% DC- 710 silicone oil on chromosorb (b) 2% SE- 30 silicone gum on chromosorb	$\begin{aligned} & 200-300 \\ & 10^{\circ} \mathrm{C} / \mathrm{min} \end{aligned}$	(a) $12 \times 3 / 16$ in. column (b) $12 \times 1 / 16 \mathrm{in}$. column	185
Low-molecular-weight phenols	Silicone-coated capillary column	-	Converted to trimethylsilyl ethers before chromatography	186
BHT	20\% SE-30 on HMDS treated 60 mesh Chromosorb W	200	Electron-capture detection (ECD)	187
Amine and phenolic antioxidants	5\% Apiezon N on 60-80 mesh chromosorb Z	250	$5 \mathrm{ft} . \times 0.5 \mathrm{in}$. I.D. stainless-steel column, FID	188
Accelerator fragments and antioxidants	80-100 Gas Chrom. Q coated with UCW-98	$88-250$ $6^{\circ} \mathrm{C} / \mathrm{min}$	Amine residues were converted to trifluoro acetamide derivative before chromatography	189
BHA and BHT	Apiezon L	220	-	190

TABLE 9 (continued)

Substances separated	Stationary phase	Column temperature $\left({ }^{\circ} \mathrm{C}\right)$	Other details	Refs.
Antioxidants	Silicone oil	220	H_{2} carrier gas	191
	Apiezon L	190	up to 0.5% antioxidant would be detected	
Phenolic antioxidants	1\% Methyl vinylsilicone Lucoprene G-1000 on Chromaton N AW DMCS	$\begin{aligned} & 100-280 \\ & 12^{\circ} \mathrm{C} / \mathrm{min} \end{aligned}$	$\mathrm{N}_{2}(30 \mathrm{ml} / \mathrm{min})$ carrier gas, FID	192
Hindered phenols	10\% SE- 30 on $40-60$ mesh Chromosorb W	330	He carrier gas, FID	193
Phenolic antioxidants	10% Silicone gum rubber E301 on $80-100$ mesh Diatomite CQ	$\begin{aligned} & 250 \\ & \text { or } \\ & 300 \end{aligned}$	Argon carrier gas ($45 \mathrm{ml} / \mathrm{min}$), FID, $2.5 \mathrm{ft} . \times 0.25 \mathrm{in}$. column	194
MBT	30\% Poly(ethanedioladipate) on Celite 545	160	H_{2} carrier gas ($65 \mathrm{ml} / \mathrm{min}$), katharometer detector	195
BHT and BHA	5\% XE-60 on Gas Chrom Q ($60-80$ mesh)	150	N_{2} carrier gas ($45 \mathrm{ml} / \mathrm{min}$), FID	196
Hydrogenated p - and m-phenylenediamines	10\% Sorbitan mono-oleate on Celite 545	-	He carrier gas ($60 \mathrm{ml} / \mathrm{min}$), $1.2 \mathrm{~m} \times 1.5 \mathrm{~mm}$ column	197
Cresols	2.5\% Bis-(3,3,5-trimethylcyclohexyl)phthalate on Chromosorb W (80-100 mesh)	125	N_{2} carrier gas ($25 \mathrm{ml} / \mathrm{min}$), $4 \mathrm{~m} \times 3 \mathrm{~mm}$ column	198
Phenolic antioxidants	SP-2340	-	FID	199
BHT	5% SE- 30 on hexamethyldisilane-treated Chezasorb	150	N_{2} carrier gas, FID, $2 \mathrm{~m} \times 4 \mathrm{~mm}$ column	200
Phenolic antioxidants and their methyl ethers	SE-30 or polyethanediol adipate	150220	N_{2} carrier gas ($45 \mathrm{ml} / \mathrm{min}$), FID	147
BHT and BHA	SE-30	280	-	201
Phenylenediamines	3\% LAC-796 on Gas Chrom 9 (60-80 mesh)	$\begin{aligned} & 140-215 \\ & 16^{\circ} \mathrm{C} / \mathrm{min} \end{aligned}$	FID, $3 \mathrm{~m} \times 4 \mathrm{~mm}$ column	202
BHT, BHA and the trifluoroacetate of BHA	5 or 10% SE- 30 on Chromosorb W AW DCMS (80-20 mesh)	$\begin{aligned} & 160 \text { and } \\ & 175 \end{aligned}$	N_{2} carrier gas, FID, $1.5 \mathrm{~m} \times 3 \mathrm{~mm}$ columns or $\mathrm{Ar}-\mathrm{CH}_{4}(9: 1)$ $(40 \mathrm{ml} / \mathrm{min})$ ECD	203
Antioxidants	OV-17 on Anakrom ABS (80-90 mesh)	$\begin{aligned} & 160-260 \\ & 10^{\circ} \mathrm{C} / \mathrm{min} \end{aligned}$	$\begin{aligned} & \mathrm{N}_{2} \text { carrier gas }(30 \mathrm{ml} / \mathrm{min}), \text { FID, } \\ & 2 \mathrm{~m} \times 0.125 \mathrm{in} . \text { column } \end{aligned}$	157
Phenolic antioxidants as their trimethylsilyl derivatives	3\% SE-54 on Gas Chrom Q (100-200 mesh) and 3\% SP 2100 on Chromosorb W HP (100120 mesh)	$\begin{aligned} & 150-280, \\ & 2^{\circ} \mathrm{C} / \mathrm{min}, \\ & 132^{\circ} \mathrm{C} \end{aligned}$	He carrier gas ($21 \mathrm{ml} / \mathrm{min}$) He carrier gas ($8 \mathrm{ml} / \mathrm{min}$), $2 \mathrm{~m} \times 3 \mathrm{~mm}$ columns	204

10% FFAP and 5% DEGS- $1 \% \mathrm{H}_{3} \mathrm{PO}_{4}$
3% SP- 2100 on Supelcoport
25% SKTN-1 on Chromaton N Glass wool pre-column
Squalene-supported on Chromosorb G
30\% SE-30 on Diatomite S
Fused-silica cap-illary columns coated with $0.15-\mu \mathrm{m}$ layer of SE-30
10% Carbowax 20 M on Celite ($100-120$ 10% Carbowax 20 M on Celite ($100-120$
mesh) or QF-1 on Chromosorb W mesh) or QF-1 on Chromosorb W
20% SE- 31 silicone on Celite 545
LAC-2R-446 on Chromosorb G AW 1\% Methyl vinyl silicone Lucoprene G-1000
on Chromotom N AW DMCS
20\% SE-30 on Chromosorb W HMDS (60
15% Silicone FM 1322/300 on fire brick 5% Apiezon L and 10% of QF-1 on
Gas Chrom Q
10% Apiezon M on Celite 545
3\% GE-XE-60 on Gas Chrom-Q
(60-80 mesh)
Phenolic antioxidants
sponpord uoupeptxo sl! pue LHG
Phenolic antioxidants
Phenolic antioxidants and their trimethylsilyl derivatives
BHT
Pyrolysis products of antioxidants
Antioxidants
BHT
Antioxidants Antioxidants Antioxidants

BHT

BHT

BHT and BHA

BHT and BHA
Phenolic antioxidants
that this method was very satisfactory in the absence of interfering compounds, but processing and extender oils now in common use usually produced interfering peaks. Gaeta ${ }^{188}$ later developed a GC method for antioxidant analysis for use in the presence of extending oils.

Tyler ${ }^{28}$ used the same principle for the determination of the purity of $\mathrm{N}, \mathrm{N}^{\prime}-$ substituted p-phenylenediamines and found that materials tend to decompose or oxidize slightly when injection is made into a flash heater, but this problem was minimal with on-column injection. A small hump on the front of the peak often persists, even with highly purified $\mathrm{N}, \mathrm{N}^{\prime}$-diphenyl-p-phenylene diamine.

Fewer reports of the application of GC for accelerator analysis exist. It is not possible to apply GC directly for the analysis as most are thermally unstable and decomposition may occur during analysis. However, a GC method has been reported by Patel ${ }^{189}$ where accelerators have been identified via their decomposition products, carbon disulphide, amines and mercaptobenzthiazole (MBT). Vulcanizate rubber was extracted in a Brock and Louth's apparatus ${ }^{44}$ containing $1.5 N \mathrm{HCl}$ and ethanol. Carbon disulphide trapped in 0.2 N alcoholic potassium hydroxide was detected by the copper xanthate reaction when thiuram and dithiocarbamates were converted into their trifluoracetamide derivatives while MBT was converted to the methyl thioether for GC detection.

The formation of derivatives before chromatography however, often leads to some sample loss and the appearance of spurious peaks. Lack of specificity can be overcome using a variety of columns in the manner described for paper chromatography and TLC. It is concluded that although GC will play an important part in the analytical scheme of play an important part in the analytical scheme of additives such as antioxidants and accelerators, it is not likely to replace TLC as the basic method at the present time.

The possibility of using pyrolysis GC has also been considered ${ }^{210,220}$. Fragmentation of polymers and in one case the analysis of a polyurethane type crosslinker in natural rubber products has been described ${ }^{221}$. The procedure employs chemical cleavage of the compound or polymer at an amenable functional group using alkaline procedure and subsequent examination of the fragments or their derivatives by gas, liquid or gel permeation chromatography. The work follows from extensive studies of alkaline fusion by Siggia ${ }^{222}$ and Haken ${ }^{223}$ and co-workers.

9. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

While GC has been of limited success in the analysis of accelerators and antioxidants, high-performance liquid chromatography (HPLC) offers many potential advantages, particularly with the high boiling compounds of limited thermal stability concerned.

The most important advantages of HPLC in the application of interest in addition to its use with non-volatile and non-thermally stable compounds is the ease of variation of the eluent with a corresponding alteration of the elution sequence. The limitations of GC due to volatility has been reported by Leitch and Kirkland ${ }^{224}$ who suggest that 85% of all compounds are not amenable to GC.

Conventional liquid chromatography, primarily used as a preventative procedure, is a slow technique, sometimes requiring hours or even days for a complete
analysis. HPLC, with efficiencies approaching those of GC, has become possible over the last decade by the development of high-pressure equipment with low-dead-volume detectors and highly efficient packings.

Analysis time in HPLC can be shortened considerably without loss of peak resolution by optimising the parameters of column length and diameter, flow-rate, sample size and support particle size. Table 10 summarises the more important literature on the application of HPLC for the determination of accelerators and antioxidants.

The most important contribution to the application of HPLC to the determination of antioxidants and plasticizers has been made by Majors ${ }^{53}$. He examined the applicability of commercially available silica supports to applications relevant to this work with columns ($1000 \times 2.1 \mathrm{~mm}$ I.D.) of Zipax, Corasil I and OPN-Durapak. Since the surface area of Zipax, $0.65 \mathrm{~m}^{2} / \mathrm{g}$ and Corasil I $7.0 \pm 1.0 \mathrm{~m}^{2} / \mathrm{g}$ are drastically different, no attempt was made to keep the film thickness equivalent. Both were impregnated with $0.52 \%(\mathrm{w} / \mathrm{w})$ with β, β^{\prime}-oxydipropionitrile comparisons with OPN-Durapak.

A number ${ }^{243-249}$ of comparisons were made with the packings relevant to amine antioxidant separation. Although the relative elution order is the same on all three columns, the selectivity for each peak relative to $\mathrm{N}, \mathrm{N}^{\prime}$-diethylaniline appears to be affected. Selectivity for each solute (elution volume of solute divided by that of $\mathrm{N}, \mathrm{N}^{\prime}$-diethylaniline) was the highest on OPN-Durapak and lowest on β, β^{\prime} -oxydipropionitrile-Zipax. However due to the increased column efficiency of Zipax, resolution of the amine solutes on β, β^{\prime}-oxydipropionitrile-Zipax are comparable. In all cases β, β^{\prime}-oxydipropionitrile-Corasil I has the best peak resolution. Height equivalent to a theoretical plate (HETP) values of less than a millimetre are obtained for the weakly retained solutes on Zipax and Corasil I.

Durapak gives plate heights an order of magnitude greater. The decreased efficiencies observed with this support are possibly due to slow solute mass transfer in the porous Corasil backbone at the higher flow-rate or from the resistance of mass transfer due to the large amount of the chemically-bonded liquid film or combination of these effects.

The increase in peak resolution for Corasil I, and distinct tailing of all peaks, suggests that the silica surface of the bead is contributing to the separation mechanism, even though the active sites should be covered with the polar β, β^{\prime}-oxydipropionitrile liquid. This effect could be beneficial when using Corasil I for certain applications, but the mechanism governing the separation may be a combination of liquid-liquid partitioning and liquid solid adsorption.

For "true" liquid-liquid chromatography without the adsorption effects from the siliceous surface of Corasil I it would be desirable permanently to deactivate the support. The manufacturer suggests heating the material overnight at $300-400^{\circ} \mathrm{C}$. A portion of Corasil I after deactivation at $350^{\circ} \mathrm{C}$ and coated wtih 0.5% by weight of β, β^{\prime}-oxydipropionitrile was packed into a $1000 \times 2.1 \mathrm{~mm}$ I.D. column. Comparing the separation of this column and the deactivated column, it is apparent that for amine antioxidants, tailing is partially eliminated as evidenced by the increased tailing factors. Likewise, the elution volumes are decreased and close to those obtained for these solutes on the Zipax column. In addition, the resolution of solutes relative to N, N-diethylaniline is decreased when compared to undeactivated Corasil I.
TABLE 10
ANALYSIS OF ACCELERATORS AND ANTIDEGRADANTS BY HPLC

Compounds separated	Column and stationary phase	Mobile phase	Column Pressure	Flow- rate ($\mathrm{ml} / \mathrm{min}$)	Concn.	Other details	Refs.
(a) MBT, MBS, PBNA	1 m, ODS Permaphase	(a) Dioxane water (40:60)	1100 p.s.i.	0.33	$1 \mathrm{mg} / \mathrm{ml}$	830 (DuPont) liquid chromato-	58
(b) Styrenated phenol	1 m, ODS Permaphase	(b) Dioxane-water (50:50)	1200 p.s.i.	0.33	$2 \mathrm{mg} / \mathrm{ml}$	graph equipped with a 3000 p.s.i.	
(c) TMTD, TMTM	1 m, ODS Permaphase	(c) Dioxane-water (7.5:92.5)	1000 p.s.i.	0.44	$2.5 \mathrm{mg} / \mathrm{ml}$	pump and $254-\mathrm{nm}$ UV detector and 1-mV recorder	
(d) DMB, PPD	1 m, Corosil - II	(d) Chloroform hexane ($12: 88$)	200 p.s.i.	1.30	$2 \mathrm{mg} / \mathrm{ml}$		
(e) DPG	1 m, Corosil II	(e) Isopropanolhexane (45:55)	300 p.s.i.	1.00	$0.5-10 \mu \mathrm{~g} / \mathrm{ml}$		
(f) MBT	1 m, Corosil - II	(f) Isopropanolhexane ($2: 98$)	200 p.s.i.	1.38	$\begin{aligned} & 0.5-1.0 \\ & \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$		
Aromatic amine type antioxidants	(a) Zipax ($1000 \times 2.1 \mathrm{~mm}$ I.D. column packed with 0.5% $\beta, \boldsymbol{\beta}^{\prime}$-oxidipropionitrile on 20 $37 \mu \mathrm{~m}$ Zipax support	Isooctane	-	0.31	$9.5 \mu \mathrm{~g} / \mathrm{ml}$	5000 p.s.i. pump, Refracto-Monitor Model 1103 (LDC) with cell volume of	53
Aromatic amine type antioxidants	(b) Corasil ($1000 \times 2.1 \mathrm{~mm}$ I.D. column packed with 0.5%, β, β^{\prime}-oxidipropionitrile on $37-50 \mu \mathrm{~m}$ Corasil support)	Isooctane	-	0.50	-	$3 \mu \mathrm{l}$ and refractive index (RI) 1.3-1.55 and UV monitor UV Absonce Monitor	
Aromatic amine type: antioxidants	(c) OPN-Durapak (1000×2.1 mm I.D. column packed with $3.7 \% \mathrm{OC}_{4} \mathrm{H}_{4} \mathrm{CN}$ bonded with $36-75 \mu \mathrm{~m}$ Porosil C	Isooctane	-	2.24	-	(LDC) with $8 \mu \mathrm{l}$ cell volume	
Hindered phenolic type: antioxidants	(d) Corosil II $(1000 \times 2.1 \mathrm{~mm}$ I.D. packing $37-50 \mu \mathrm{~m}$ Corasil II activated at $110^{\circ} \mathrm{C}$)	1% Isopropanol in hexane	-	0.95	$\begin{aligned} & 0.54 \\ & \mathrm{mg} / \mathrm{ml} \end{aligned}$		

Antioxidants	$300 \times 4 \mathrm{~mm}$ I.D. glass column packed with SG-10-Silica gel.	Isopropanol-n-hexane (15:85)and(4:96) + 0.1% triethylamine	1-1.5 MPa	0.55-1.5	5. $10^{3} \mathrm{~mol} / \mathrm{l}$	Detection was by UV detector at 254 nm	225
Antioxidants	(a) $200 \times 3 \mathrm{~mm}$ I.D. stainlesssteel column packed with Se paron SE	(a) n-Heptane	-	0.83	-	UV detector at 230 nm	55
Antioxidants	(b) $200 \times 8 \mathrm{~mm}$ I.D. stainlesssteel column packed with Sc paron SE	(b) Methanol n-heptane (97:3)	-	0.76	-	Refractive index detector	
Antioxidants	(c) $300 \times 3 \mathrm{~mm}$ I.D. glass column packed with Separon SE	(c) Water-methanoldiethylether ($10: 55: 35$)	-	0.55	-	UV detector at 270 nm	
Accelerators and antioxidants	(d) $300 \times 3 \mathrm{~mm}$ I.D. glass column packed with Separon SE	(d) -		0.45	-	UV detector at 254 nm	
Antioxidants	(e) $300 \times 3 \mathrm{~mm}$ I.D. glass column packed with Separon SE	(e) -	-	0.58	-	UV detector at 254 nm	
MBT	Bondapak-Alkyl-Ph	$\begin{aligned} & \text { Gradient of } \\ & \text { methanol-water } \\ & (55: 45) \text { to (90:10) } \end{aligned}$	-	2.0	-	UV detection at 320 nm(limit 0.1 ppm)	226
Phenolic and amine antioxidants	Alkyl phenyl-lined (Bondpak), reversed-phase	Gradient elution of $0.05 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ in acetonitrile	-	-	-	UV detection	227
Toluene diamines	1 m, SCX-Zipax ${ }^{\text {* }}$	Water	800 p.s.i.	1.0	-	Ambient temperature	228
Toluene diamines	1 m 1\% Cyano-silicone on Zipax ${ }^{*}$	n-Heptane	900 p.s.i.	1.5	-	UV photometer at 254 nm	
Chloro aromatic amines	$1 \mathrm{~m} \times 3.2 \mathrm{~mm}$ I.D. column, 1.75 trimethylene glycol (TMG) on Zipax	TMG saturated with heptane	-	1.6	-		
Xanthate accelerators	1 m ODS-Zipax	35\% THF in water	1500 p.s.i.	0.7	-		
Antioxidants	25 cm column packed with Zorabax-SIL	(a) Hexane $+0.2 \%$ methylenechloride (b) $0.9-70 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution	-	1.0	-	UV and RI detectors	56

rABLE 10 (continued)

Compounds separated	Column and stationary phase	Mobile phase	Column Pressure	Flow- rate (ml/min)	Concn.	Other details	Refs.
Phenolic antioxidants	Sil $\times 11$ - Octadecyl	$\begin{aligned} & \text { Methanol-water (} 9: 1 \text {, } \\ & 8: 2,7: 3 \text {) } \end{aligned}$	-	0.9	0.2\%	Retention times increases with the water-methanol ratio	229
Cresols	$25 \mathrm{~cm} \times 2.1 \mathrm{~mm}$ column packed with Zorbax SIL ($5 \mu \mathrm{~m}$)	$\text { Cyclohexane- } \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15:2)	2500 p.s.i.	0.6		Operation at $48^{\circ} \mathrm{C}$, UV detection at 254 nm	198
Phenolic antioxidants	$30 \mathrm{~cm} \times 4 \mathrm{~mm}$ column packed with μ Bondapak C_{18}	Gradient of methanol 55-85\%	-	-	-	-	230
Antioxidants and their transformation products	$25 \mathrm{~cm} \times 4 \mathrm{~mm}$ column packed with Partisil ($5 \mu \mathrm{~m}$)	Gradient elution $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane	-	-	-	UV detector at 242 nm	231
BHT	Column ($1 \mathrm{~m} \times 2.1 \mathrm{~mm}$) Permaphase ODS	Water-methanol (9:11)	300 p.s.i.	0.3	-	UV detector at 254 nm	232
Phenols and BHT	Sephadex LH-20 column	Cyclohexane-chloroform (1:1)	-	-	-	-	233
Phenolic antioxidants	Column ($25 \mathrm{~cm} \times 1.5 \mathrm{~mm}$) of Micropack Si 10	2,2,4-Trimethylpentane ethyl-acetate- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (19:3:3)	-	-	-	UV detector at 292 nm limit of detection 921 ng	234
MBT	Column ($15 \mathrm{~cm} \times 0.46 \mathrm{~cm}$) of Merckosorb SI $60(5 \mu \mathrm{~m})$	Ethanol-2,2,4-trimethylpentane (1:9)	-	1	$0.3 \mathrm{mg} / \mathrm{l}$	UV detector at 325 nm , detection limit $0.03 \mathrm{mg} \mathrm{l}^{-1}$	235

Phenolic antioxidants	Column ($30 \mathrm{~cm} \times 3.9 \mathrm{~mm}$) of μ Porasil ($10 \mu \mathrm{~m}$)	5 min , elution gradient 100% heptane to 100% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	-	-	UV detection at 280 nm, limit of detection $0.0006-$ 0.004%	236
Phenolic antioxidants	Column $25 \mathrm{~cm} \times 3 \mathrm{~mm}$) of LiChrosorb RP-18 ($10 \mu \mathrm{~m}$)	Gradient elution with 5% acetic acid initially in aq. acetonitrile or methanol	-	1	-	UV detection at 280 nm	237
Phenolic antioxidants	Column ($30 \mathrm{~cm} \times 3.9 \mathrm{~mm}$) of μ Bondapak C_{18} and ($30 \mathrm{~cm} \times$ 3.0 mm) column of Co:Pell ODS ($30-38 \mu \mathrm{~m}$)	Gradient programme from 50 to 90% of methanolic 1\% acetic acid	-	1.5	-	-	238
Phenolic antioxidants	Columns ($25 \mathrm{~cm} \times 6 \mathrm{~mm}$) of Separon SE	70-100 Methanol	-	1	-		239
Phenolic antioxidants	Column ($25 \mathrm{~cm} \times 6 \mathrm{~mm}$) of Separon Si-C18	Aq. 97\% methanol	-	1	-	$\begin{aligned} & \text { UV detector at } 270 \\ & \text { nm } \end{aligned}$	240
Phenolic antioxidants	Column of Lichrosorb RP-18 ($10 \mu \mathrm{~m}$)	80\% Methanol	-	1	-	UV detector at 254 nm	241
Phenolic antioxidants	Column of Partisil PXS 10/25 ODS-2 and LiChrosorb RP-18	$0.05 \mathrm{M} \mathrm{LiClO}_{4}$ in aq. 30,65 and 85% methanol	-	-	-	Fluorescende at 370 nmUVdetector at 230 and 280 nm , electrochemical detector	242
BHT	1-m column of Corasil II	Heptane	-	-	-	-	166
1,4-Phenylenediamine	Column ($2.6 \mathrm{~mm} \mathrm{O.D}$.) of Silpearl ($10-30 \mu \mathrm{~m}$) (Kavalier)	n-Heptane ethanol	-	1.5	-	UV detector at 254 nm	119

Majors ${ }^{53}$ also reported the separation of hindered phenolic antioxidants by HPLC. Corasil II of surface area $14 \pm 2 \mathrm{~m}^{2} / \mathrm{g}$ was used and it was suggested that this material should facilitate the direct extrapolation of TLC data to moderate ($15-500$ p.s.i.) and high (> >500 p.s.i.) pressure liquid-solid chromatography ${ }^{35,250}$. To illustrate this possibility, Majors separated three phenolic antioxidants on silica gel plates conditioned for 1 h at $110^{\circ} \mathrm{C}$, and on $1000 \times 2.1 \mathrm{~mm}$ Corasil II column.

Pugh ${ }^{228}$ used HPLC for the first time for the separation of amine antidegradants. Subsequently, Sullivant et al. ${ }^{38}$ applied HPLC for the separation of accelerators and antioxidants extracted from unvulcanized rubber stocks. Some accelerator decomposition was observed in the rubber during mixing. TLC was used as an adjunct to HPLC for the identification of the individual additives.

Guenter et al. ${ }^{226}$ determined MBT in rubber baby bottle nipples by HPLC. The mean release of MBT was 3 ppm with $30 \mu \mathrm{~g} / \mathrm{l}$ from some samples with the limit of detection 0.1 ppm . The release of MBT should be controlled because of its bitter taste.

A comparison of liquid adsorption chromatograph (LAC) with gel permeation chromatography (GPC) was made by Wims et al. ${ }^{56}$, who reported that both GPC and LAC are very good for routine monitoring techniques. LAC can be used when a factor analysis of antioxidants is required.

Guergens ${ }^{227}$ et al. also used HPLC for antioxidant analysis. Amine and phenolic stabilizers, present in rubber articles, were separated in an alkyl-phenyl-lined (Bondapak) reversed-phase column, with gradient elution by 0.05 M orthophosphoric acid in acetonitrile.

Smejkal et al. ${ }^{55}$ used HPLC for the separation of antioxidants with different sterically shielded polar groups. A selective interaction solute-mobile phase was utilized and liquid-liquid chromatography (LLC) achieved by means of utilization of the various interaction profiles of some solvents. LLC with the macroporous gel Separon SE was used to determine the retention of some antioxidants and to analyse these compounds in polymers.

10. SIZE EXCLUSION CHROMATOGRAPHY

GPC also known as size exclusion chromatography (SEC), has long been used as a method for the determination of polymeric molecular weight distributions, for the analysis of polymer additives, preparative fractionation and sample clean-up. However, techniques formerly used, required long columns and low linear velocities (i.e. flow-rates) in order to achieve a required resolution. Following the development of microparticulate columns for ion-exchange, liquid-solid and bonded-phase chromatography in the early 1970's, microparticles also became available for the exclusion chromatographic mode, allowing more rapid chromatographic separations. The SEC microparticles resulted in shorter columns ($30-50 \mathrm{~cm}$ vs. 120 cm), consuming less solvent and permitting more convenient thermostatting.

Relative to other LC modes, the advantage of exclusion techniques is its apparent simplicity. Often one merely dissolves the sample and injects it. In contrast to the other LC modes, all sample components should elute between the excluded volume and the total permeation volume, each compound appearing at a fixed time (volume) interval. Thus little operator experience in chromatography is required and the in-
terpretation of the chromatogram is fairly easy. The only decision to be made is in choosing optimum pore size which can be selected by a knowledge of the molecular weight operating range of the column (or columns) and matching it with the suspected molecular weight range of the sample.

The most important contribution to the application of SEC for the separation of antioxidants and accelerators has been made by Protitová and co-workers 47,54,57,251. Table 11 summarises the more important literature on the application of SEC to antioxidant and accelerator analysis.

Protivová and Pospísili ${ }^{251}$ have reported on the behaviour of some amine antidegradants (see Table 12) and some model substances (phenols, aromatic hydrocarbons and amines) during SEC and have applied their technique, as described below, to the analysis of rubber extracts. Coupek et al. ${ }^{54}$ and Protivová et al. ${ }^{47}$ have previously discussed the application of SEC to stabilizers of various types but have not discussed the use of this technique quantitatively.

Since the size exclusion method does not allow a direct determination of the molecular weights or molar volumes of the samples under investigation, calibration was made by using standard compounds in the form of a graphic dependence of their molar volume on the elution volume ${ }^{251}$. Normal hydrocarbons and aliphatic esters were used as standards. The molar volumes ($\mathrm{ml} / \mathrm{mole}$) were plotted against elution volumes, $V_{\mathrm{e}}(\mathrm{ml})$, in the calibration curves, as shown in Table 13. The molar volumes were calculated from the atomic volumes and structural coefficients ${ }^{253}$.

The results of SEC measurements by Protivová and Pospísil ${ }^{251}$ on the elution volumes of aromatic amines, their molecular weights, calculated molar volumes and the effective molar volumes observed and read from the calibration curves are given in Table 12. A comparison of the calculated and effective molar volumes revealed deviations in the behaviour of all the amines investigated, compared to similar aliphatic hydrocarbons.

The behaviour of the compounds in tetrahydrofuran solution and in contact with a swollen gel is affected by several factors. Protivová and Pospísil deduced from the literature data ${ }^{254-256}$ and from experimental data obtained by measurements of various types of compounds that, similarly to phenols, the gel chromatographic behaviour of aromatic amines is predominantly affected by the formation of solvates due to intermolecular hydrogen bonds between the amine and ether groups of tetrahydrofuran.

Solvation with tetrahydrofuran leads to an increase in the volume of the molecule of the aromatic amine and a decrease in V_{e}. To compare the behaviour of aromatic amines, data on selected alkyl phenols are given in Table 14 measured under comparable conditions.

The increase in V_{e} is affected by changes in the pore size of the gel during the flow of the sample through the columns. If the gel comes into contact with compounds that can be readily hydrated (e.g. amines), a transitional decrease in the gel pores is observed due to the contact with water molecules (the so-called trapping
TABLE 11
SEPARATION OF ANTIDEGRADENTS AND ACCELERATORS BY GPC

Compounds separated	Columns used	Mobile phase	Column pressure (atm)	Flow-rate

TABLE 12
THE BEHAVIOUR OF AMINE ANTIOXIDANTS, ANTIOZONANTS AND MODEL COMPOUNDS IN SEC ${ }^{251}$

Chemical structure	Molecular weight	$\begin{aligned} & V_{e} \\ & (m l) \end{aligned}$	Molar volume ($\mathrm{ml} / \mathrm{mole}$)		Deviation
			Calculated	Effective	
Aniline	93.12	238	110.2	150.3	+40.1
4-Methylaniline	107.15	238	132.4	150.3	+ 17.9
2,3-Dimethylaniline	121.18	247	154.6	115.6	-39.0
2,4,6-Trimethylaniline	135.20	232	168.8	183.2	+14.4
2,3,5,6-Tetramethylaniline	149.24	247	199.0	115.6	-83.4
N -Methylaniline	107.15	253	133.9	95.9	-38.0
\mathbf{N}, N-Dimethylaniline	121.18	278	156.1	44.2	-111.9
1-Naphthylamine	143.18	242	161.8	134.9	-26.9
2-Naphthylamine	143.18	241	161.8	139.0	-22.8
Diphenylamine	169.22	229	200.3	201.0	+0.7
Phenyl-2-naphthylamine	219.27	235	251.9	166.7	-85.2
o-Phenylenediamine	108.14	238	124.4	150.3	+25.9
m-Phenylenediamine	108.14	220	124.4	266.1	+ 141.7
p-Phenylenediamine	108.14	248	121.4	111.4	-10.0
4-Aminodiphenylamine	184.23	221	214.5	257.6	+43.1
4,4'-Bis(dimethylamino)diphenylamine	255.41	228	320.5	212.3	-108.2
Benzidine	184.23	217	213.0	291.7	+78.7
o-Tolidine	212.28	224	257.4	234.4	-23.0
$\mathbf{N}, \mathbf{N}^{\prime}$-Dimethyl-p-phenylenediamine	136.22	247	171.8	115.6	-56.2
N, N '-Diethyl-p-phenylenediamine	164.14	222	216.2	249.5	+33.3
$\mathrm{N}, \mathrm{N}^{\prime}$-Di-sec.-butyl-pphenylenediamine	220.38	236	305.0	162.2	-142.8
$\mathrm{N}, \mathrm{N}^{\prime}$-Diisoheptyl-pphenylenediamine	305.4	202	438.2	462.4	+24.2
$\mathrm{N}, \mathrm{N}^{\prime}$-Diisooctyl-pphenylenediamine	332.58	200	482.6	495.5	+ 12.9
$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}$-trimethyl-pphenylenediamine	150.28	252	186.0	98.9	-87.1
$\mathrm{N}, \mathrm{N}^{\prime}$-Dimethyl-2-methyl-pphenylenediamine	150.28	250	186.0	105.2	-80.8
$\mathrm{N}, \mathrm{N}^{\prime}$-Diphenyl-pphenylenediamine	260.36	208	304.6	384.5	+79.9
$\mathbf{N}, \mathbf{N}^{\prime}$-Dinaphyl- p phenylenediamine	360.46	205	415.2	421.7	+6.5
N -Isopropyl- N^{\prime}-phenyl-p-phenylenediamine	226.34	222	282.6	249.5	-33.1
N -Isobutyl- N^{\prime}-phenyl- p phenylenediamine	240.36	214	304.8	319.9	+15.1
N -Cyclohexyl- N '-phenyl- p phenylenediamine	266.41	206	326.8	410.2	+83.4
N -Octyl- N^{\prime}-phenyl- - phenylenediamine	296.47	206	393.6	410.2	+ 16.6
$\mathrm{N}, \mathrm{N}^{\prime}$-Bis-4-($\mathrm{N}, \mathrm{N}^{\prime}$-dimethylamino)-phenyl- p-phenylenediamine	346.55	218	424.8	283.1	-141.7

TABLE 13
THE BEHAVIOUR OF STANDARD COMPOUNDS IN SEC AND MOLAR VOLUMES CALCULATED ${ }^{253}$

Compound	Molecular weight	Molar volume $(\mathrm{ml} / \mathrm{mole})$	V_{e} (ml)
n-Pentane	72.15	118.4	246
n-Hexane	86.18	140.6	239
n-Heptane	100.20	162.8	233
n-Dodecane	170.33	273.8	220
n-Hexadecane	226.43	362.6	212
n-Octadecane	254.48	414.4	206
Octyl adipate	270.14	495.4	200
Octyl sebacate	326.24	613.8	192

effect ${ }^{255}$). Another factor which greatly contributes to a considerable increase in V_{e} is the aromatic character of the compounds. An example can be seen in the behaviour of several aromatic hydrocarbons in Table 14. Deviations in the V_{e} values compared to the assumed molar volumes have been found by Coupek et al. ${ }^{257}$. Since a com-

TABLE 14
THE BEHAVIOUR OF SELECTED AROMATIC HYDROCARBONS AND PHENOLS IN SEC ${ }^{251}$

Chemical structure	Molecular weight	$\begin{aligned} & V_{e} \\ & (m l) \end{aligned}$	Molar volume ($\mathrm{ml} / \mathrm{mole}$)		Deviation
			Calculated	Effective	
Benzene	78.11	278.0	96.0	44.2	-51.8
Toluene	92.14	256.0	118.2	87.5	-30.7
m - and p-Xylenes	106.16	255.0	140.4	90.2	-30.2
Ethylbenzene	106.16	247.0	140.4	115.6	-24.8
Mesitylene	120.18	255.0	154.6	90.2	-64.4
Pseudocumene	120.18	254.0	154.6	92.7	-61.9
Cumene	120.18	241.0	162.6	139.0	-23.6
'p-Cymene	134.21	245.0	184.8	122.5	-62.3
1,2,4,5-Tetramethylbenzene	134.21	252.0	184.8	98.9	-85.9
tert.-Butylbenzene	134.21	242.0	184.8	134.9	-49.9
Naphthalene	128.16	255.0	147.6	90.2	-57.4
Diphenyl	154.20	241.0	162.6	139.0	-23.6
Phenol	94.11	240.0	105.9	142.9	+37.0
o-, m - and p-Cresols	108.13	237.0	128.1	157.4	+28.7
2- and 4-Ethylphenols	122.16	235.0	100.3	166.7	+16.4
2-n-Propylphenol	136.19	229.0	164.5	201.0	+36.5
2,4-Dimethylphenol	122.16	233.0	150.3	177.9	+27.6
2,3-Dimethylphenol	122.16	238.0	150.3	150.3	0.0
2,6-Dimethylphenol	122.16	239.0	150.3	147.9	-2.4
2,4,6-Trimethylphenol	136.19	237.0	164.5	157.4	-7.1
2 - and 4-Phenylphenols	170.20	233.0	194.5	177.9	-16.6
2-Naphthol	144.16	251.0	157.5	101.6	- 55.9
o-Aminophenol	109.12	242.0	130.1	134.9	+4.8
m-Aminophenol	109.12	226.0	130.1	221.3	+91.2
p-Aminophenol	109.12	242.0	130.1	134.9	+4.8
Tetrahydrofuran	72.10	-	88.3	-	-

parison with a series of amine compounds was necessary Protivová et al. ${ }^{47}$ repeated the measurements under conditions when different absolute V_{e} values wer found. The comparison of relative relationships showed a negative difference between the calculated and the determined molar volumes in all cases. This is true for both mononuclear and binuclear aromatic hydrocarbons. The aromatics associate with the gel, which is also aromatic; owing to sorption, they remain in the gel pores much longer than similar non-aromatic compounds. Steric effects also play their part especially in the case of bulky substituents.

The same factors are met in the analysis of aromatic amines. As can be seen from Table 12 the minimum deviation between the calculated and effective molar volumes appeared in the case of diphenylamine; here, influences tending to increase and to decrease the molar volume occurred at the same time as result of the presence of two aromatic nuclei and one amino group. The maximum negative deviation was observed with $\mathrm{N}, \mathrm{N}^{\prime}$-di-sec.-butyl-p-phenylenediamine and $\mathrm{N}, \mathrm{N}^{\prime}$-bis-4-($\mathrm{N}, \mathrm{N}^{\prime}$-dimeth-ylamino)phenyl-p-phenylenediamine.

Some basic findings about the effect of the structure of the compounds investigated in the work of Protivová et al. ${ }^{47}$ on the SEC behaviour are as follows: the deviation between the observed and calculated molar volume of benzene was -51.8. Substitution of a benzene ring not containing any solvatable group with small alkyls was reflected in deviations in the range from -23 to -86 . Introduction of one -OH or $-\mathrm{NH}_{2}$ group into the benzene ring increases the calculated, as well as the effective, molar volume of benzene by approximately the same value. The deviation between the calculated and the effective molar volume is also comparable. It is interesting to compare the behaviour of the benzene derivatives containing two solvatable groups. The effective molar volumes of o - and p-aminophenols differ little from the calculated volume. A high solvation took place in the case of m-aminophenol. A similar trend was found in the series of isomeric phenylendiamines. In this case, however, there is a striking difference between the o - and p-isomers, the latter exhibiting a negative deviation.

In the case of primary amines with one benzene ring and small substituents in the ring, hydrogen bonds between amine groups and tetrahydrofuran can play a specific role. A comparative investigation of the SEC behaviour of selected monoalkylphenyls showed that in all cases, even if the less bulky substituent was at position 2, solvation took place. The same holds for 2,4 -xylenol. The effective molar volume for all other dialkylphenols was the same or smaller than the assumed volume. The effect of the substituent in anilines similarly substituted in the ring with a methyl group was less regular. A marked difference is seen when 2,4,6-trimethylphenol and 2,4,6-trimethylaniline are compared and for which a similar trend in the solvation effect might have been assumed an irregular effect on the volume due to solvation can be observed when comparing 2,4,6-trimethylaniline and 2,3,5,6-tetramethylaniline. Less regular influences on the retention time of the substitution of simple aromatic amines, in comparison with phenols, has also been observed in column liquid chromatography ${ }^{258}$.

The presence of two condensed aromatic nuclei has a strong effect as in the naphthalene series. Introduction of the solvatable group is either virtually not reflected in a decrease in the negative deviation from the calculated molar volume (cf., 2-naphthol), or the solvation makes the effective molar volume only approximate to the calculated volume (both examples were isomeric naphthylamines).

Substitution with one polar group in the diphenyl series (4-phenylphenol) brings the effective molar volume somewhat nearer to the calculated one. The effect of solvation is particularly marked in the presence of two amino groups, as can be seen in the example of benzidine. Experimental data show, however, that hindrance due to a mere methyl group in o-toluidine suppresses the effect of solvation in this case.

If aliphatic substituents are bonded to a nitrogen atom, the possibility of solvation decreases and the aromaticity of the compound plays the predominant role in SEC analysis. This can be demonstrated for the series aniline, N-methylaniline and N, N-dimethlaniline. If nitrogen in aniline is substituted by an aromatic residue, a decrease in the observed molar volume can be expected compared to the calcualted one, owing to the concurrent effect of the decreased solvation power and increased portion of the aromatic groups. This assumption is valid for phenyl-2-naphtylamine or $\mathrm{N}, \mathrm{N}^{\prime}$-bis(4-dimethylamino)diphenylamine, but not for diphenylamine. In accordance with the preliminary data, the presence of a solvatable group in diphenylamine will raise the value of the molar volume observed (e.g. 4 -aminodiphenylamine). In a similar fashion to the aniline series, a decrease in solvation due to substitution at the nitrogen atom must also be assumed for the phenylenediamine series. In the group of aliphatically $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted derivatives compounds were studied by Protivová et al. ${ }^{47}$ which differed to a great extent in the volume of the substituent. However, with the exception of compounds substituted with methyl groups (the conclusions hold also for $\mathrm{N}, \mathrm{N}^{\prime}$-dimethyl-2-methyl-p-phenylenediamine and $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}$-tri-methyl-p-phenylenediamine) and with sec.-butyl, the assumption concerning limited solvation was not fulfilled. Further interactions among molecules of analysed compounds, eluent and gel packing probably occur specifically in the system studied.

Completely anomalous behaviour was exhibited by the $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted derivatives of p-phenylenediamine, in which one of the substituents on the nitrogen atom or both of them were aromatic. For these derivatives, larger elution volumes than those found were assumed, as the aromatic substituents on the nitrogen atom are capable of restricting the formation of hydrogen bonds with tetrahydrofuran.

Some of the amine compounds investigated by Protivová et al. ${ }^{47}$ exhibited negative peaks with refractometric detection (that is, they had a lower refractive index increment than tetrahydrofuran) or the shape of the peaks was unusual. To prevent errors due to an incorrect determination of the peak of a compound, a combination of refractometric and UV detection proved useful.

The literature would suggest that the SEC technique is ideally suited to the analysis or purification of a wide variety of antioxidants and accelerators from polymers. Often, for low-molecular-weight additives, resolution is such that they can be determined directly. In some cases the technique can be used to provide a prefractionation or clean-up with the actual separation being carried out with a secondary chromatographic method such as reversed-phase LC. For such work, SEC columns have the advantage of low peak dilution.

11. SUMMARY

The use of various chromatographic methods in the analysis of all classes of elastomer antidegradants and accelerators is reviewed. The review of extraction methods is also included.

REFERENCES

1 N. Bekkedahl and R. D. Stiehler, Anal. Chem., 21 (1949) 266.
2 N. Bekkedahl, Anal. Chem., 22 (1950) 253.
3 N. Bekkedahl, Anal. Chem., 23 (1951) 243.
4 N. Bekkedahl, Anal. Chem., 24 (1952) 279.
5 N. Bekkedahl, Anal. Chem., 25 (1953) 54.
6 N. Bekkedahl and M. Tryon, Anal. Chem., 27 (1955) 589.
7 M. Tryon, Anal. Chem., 29 (1957) 714.
8 M. Tryon and F. J. Lining, Anal. Chem., 31 (1959) 767.
9 F. J. Lining, M. Tryon and E. J. Parks, Anal. Chem., 33 (1961) 127R.
10 E. J. Parks and F. J. Lining, Anal. Chem., 35 (1963) 160R.
1 C. W. Wadelin, Anal. Chem., 37 (1965) 214R.
2 C. W. Wadelin and G. S. Trick, Anal. Chem., 39 (1967) 239R.
3 C. W. Wadelin and G. S. Trick, Anal. Chem., 41 (1969) 299R.
C. W. Wadelin and G. S. Trick, Anal. Chem., 43 (1971) 334R.
C. W. Wadelin and M. C. Morris, Anal. Chem., 45 (1973) 333R.
C. W. Wadelin and M. C. Morris, Anal. Chem., 47 (1975) 327R.
C. W. Wadelin and M. C. Morris, Anal. Chem., 49 (1977) 133R.
C. W. Wadelin and M. C. Morris, Anal. Chem., 51 (1979) 303R.
A. Krishnen, Anal. Chem., 53 (1981) 159R.
A. Krishnen, Anal. Chem., 55 (1983) 87R.
J. B. Pausch, Anal. Chem., 54 (1982) 89A.
F. B. Williamson, Rubber J. (India), 148, No. 2 (1966) 24.
A. Krishnen, A.C.S. Rubb. Div., Meeting, 1981, Paper No. 45.
R. B. Walter and J. F. Johnson, J. Polymer Sci. Macromol. Rev., 15 (1980) 29.
D. A. Wheeler, Talanta, 15 (1968) 1315.
S. A. Liebran, Polymer Preprints, 18 (1977) 194.

27 J. G. Krener, Rubber Chem. Technol., 42 (1969) 381.
28 W. P. Tyler, Rubber Chem. Technol., 40 (1967) 238.
29 V. L. Burger, Rubber Chem. Technol., 32 (1959) 1452.
30 G. B. Cox, Misc. Rep. Dept. Trade Ind., 1 (1973) 67.
31 E. Schroder and E. Hagen, Plaste Kautsch, 15 (1968) 625.
32 E. Schroder, Pure Appl. Chem., 36 (1973) 233.
33 F. Smejkal and M. Popl, Chem. Listy, 75 (1981) 1009.
34 W. C. Wake, The Analysis of Rubber and Rubber-Like Polymers, 2nd Ed., Wiley-Interscience, New York, 1969.
35 T. R. Crompton, Chemical Analysis of Additives in Plastics, Vol. 46, Pergamon Press, 2nd ed., 1977.
36 F. J. Welcher (Editor), Standard Methods of Chemical Analysis, Part B, Van Nostrand, New York, 6th ed., 1963, p. 1664.
37 J. H. Haslam and H. A. Willis, Identification and Analysis of Plastics, Van Nostrand, Princeton, NJ, 1965.

38 R. H. Campbell and R. W. Wise, Rubber Chem. Technol., 37 (1964) 635.
39 R. H. Campbell and R. W. Wise, Rubber Chem. Technol., 37 (1964) 650.
40 C. Dufraise and A. Jarrijon, Rubber Chem. Technol., 16 (1943) 941.
41 S. Bhoumik and S. Banerjee, Rubber Chem. Technol., 47 (1974) 252.
42 W. Scheele and P. Sbange, Rubber Chem. Technol., 30 (1957) 69.
43 W. Scheele and P. Sbange, Rubber Chem. Technol., 30 (1957) 77.
44 M. J. Brock and G. D. Louth, Anal. Chem., 27 (1955) 1575.
45 D. W. Carlson, M. W. Hayes, H. C. Ranshaw, R. S. McFadden and A. G. Altenau, Anal. Chem., 43 (1971) 1874.

46 A. Fiorenza, G. Bonomi and R. Piacentini, Rubber Chem. Technol., 36 (1963) 1119.
47 J. Protivová, J. Pospísil and J. Holčik, J. Chromatogr., 92 (1974) 361.
48 M. B. Millingen, Anal. Chem., 46 (1974) 746.
49 J. W. H. Zijp, Rubber Chem. Technol., 28 (1955) 705.
50 II. Auler, Rubber Chem. Technol., 37 (1964) 950.
51 J. W. H. Zijp, Rec. Trav. Chim., 76 (1957) 313.

52 J. W. H. Zijp, Rec. Trav. Chim., 76 (1957) 317.
53 R. E. Majors, J. Chromatogr. Sci., 8 (1970) 338.
54 J. Coupek, S. Pokorneý, J. Protivová, J. Holčik, M. Karvaš and J. Pospísil, J. Chromatogr., 65 (1972) 279.

55 F. Smejkal, M. Popl and A. Cihova, J. Polym. Sci., Polym. Symp., 68 (1980) 145.
56 A. M. Wims and S. W. Swarin, J. Appl. Polym. Sci., 19 (1975) 1243.
57 J. Protivová, J. Pospísil and L. Zikmund, J. Polym. Sci., Polym. Symp., 40 (1973) 233.
58 A. B. Sullivan, G. H. Khul and R. H. Campbell, Rubber Age (NY), 108 (1976) 41.
59 Annual Book of ASTM Standards, Part 37, American Society for Testing and Materials, Philadelphia, PA, 1983, Method D. 3156.
60 R. H. Campbell and R. W. Wise, J. Chromatogr., 12 (1963) 178.
61 D. F. Slonaker and D. C. Sievers, Anal. Chem., 36 (1964) 1130.
62 K. Metcalfe and R. Tomlinson, Plastics (London), 25 (1960) 319.
63 H. Hoggon, O. Korn and D. Jehle, Nahrung, 9 (1965) 495.
64 British Standards 2782, British Standard Institution, London, Part 4, 1965, Method 405 D.
65 British Standards 2782, British Standard Institution, London, Part 4, 1965, Method 405 B.
66 S. S. Yushekevichyute and Yu. A. Shlyanikov, Plast. Massy Rezina, 1 (1967) 54.
67 C. L. Hilton, Anal. Chem., 32 (1960) 1554.
68 R. F. Van der Heide and O. Wouters, Z. Lebensm. Untersch. Forsch., 117 (1962) 129.
69 C. Stafford, Anal. Chem., 34 (1962) 794.
70 J. P. Varma, N. P. Suryanarya and A. L. Sircar, J. Sci. Ind. Res., 21 (1962) 49.
71 J. P. Varma, N. P. Suryanarya and A. L. Sircar, J. Sci. Ind. Res., 20 (1961) 79.
72 T. Yuasa and K. Kamiya, Bunseki Kagaku (Jap. Anal.), 13 (1964) 966.
73 H. L. Spell and R. D. Eddy, Anal. Chem., 32 (1960) 1811.
74 C. L. Hilton, A.C.S. Rubb. Div., 82nd Meeting, October 17-19, 1962, Paper No. 19; Abstr. Rubber Age, (1962) 968.
75 F. E. Lussier, A.C.S. Rubber Div., 122nd Meeting, 1983, Paper No. 27.
76 H. V. Drushel and A. L. Sommers, Anal. Chem., 36 (1964) 836.
77 H. J. Brandt, Anal. Chem., 33 (1960) 1390.
78 Akad. Wissenschaft, DDR Patent, No. DL140-332 (1978).
79 G. M. C. Higgins, NR Technol., 9 (1978) 68.
80 S. S. Yushkevichyute and Yu. A. Shlyanikov, Plast. Massy Rezina, No. 12 (1966) 62.
81 G. P. McSweeney, Rubber Ind. (London), 4 (1970) 245.
82 T. R. Crompton, Symp. on Polymer Analysis, Welsh College of Advanced Technology, July, 1967.
83 A. W. Myers, C. E. Rogers, V. Stannet and M. Szuare, Mod. Plast., 34 (1957) 157.
84 C. H. Klute and P. J. Franklin, J. Polymer Sci., 6 (1962) 538.
85 E. Schroder and G. Rudloph, Plaste Kautsch., 10 (1963) 22.
86 W. Scheele, O. Lorenz and W. Dummer, Kautsch. Gummi, 7 (1954) WT 27?.
87 T. R. Crompton, J. Appl. Polym. Sci., 6 (1962) 538.
88 P. J. Cornish, J. Appl. Polym. Sci., 7 (1963) 727.
89 O. Korn and H. Waggon, Plaste Kautsch., 11 (1964) 278.
90 T. Pazowyi, M. Tudos and M. Ditruitov, Angew. Makromol. Chem., 10 (1970) 75.
91 K. E. Kress and F. G. S. Mees, Anal. Chem., 27 (1955) 528.
92 L. L. Yashina, B. A. Gromev, V. B. Miller and Yu. A. Shlyapinkow, Vysokomol. Soedin, 81 (1966) 1411.

93 J. Tsurugi, S. Kurakani and K. Goda, Rubber Chem. Technol., 44 (1971) 857.
94 M. Ghaemy and G. Scott, Polym. Degradat. Stabil., 3 (1981) 405.
95 K. E. Kress and F. G. S. Mees, Anal. Chem., 27 (1955) 528.
96 F. Zilio-Grandi, G. Libralesso, G. Sassu and G. Svegliado, Mater Plast. Elastomeri, 30 (1964) 643.
97 A. Fiorenza, G. Bonomi and A. Saredi, Mater Plast. Elastomeri, 31 (1965) 1045.
98 K. G. Berger, N. D. Sylvester and D. M. Haines, Analyst (London), 8 (1960) 341.
99 C. A. Parker, J. Roy. Inst. Chem., 81 (1957) 674.
100 L. J. Bellamy, J. H. Lawtie and E. W. S. Preu, Trans. Inst. Rubber Ind., 23 (1947) 15.
101 J. Mann, Trans. Inst. Rubber Ind., 27 (1951) 232.
102 C. A. Parker and J. M. Berriman, Trans. Inst. Rubber Ind., 28 (1952) 279.
103 R. Miksch and L. Prolss, Gummi Asbest, Kunstst., 13 (1960) 250.
104 K. W. Biefer, Mitt Geb. Lebensmittelunters. Hyg., 53 (1952) 243.

105 T. Kabota, S. Kutibayashi and T. Furuhama, J. Soc. Rubber Ind. (Japan), 35 (1962) 669.
106 H. Auler, Gummi Asbest, Kunstst., 14 (1961) 1024.
107 R. B. Delves, J. Inst. Petrol., 48 (1962) 283.
108 D. S. Davies, H. L. Goldsmith, A. K. Gupta and G. R. Lester, J. Chem. Soc., (1956) 4926.
109 J. W. H. Zijp, Rec. Trav. Chim. Pays-Bas, 75 (1956) 1155.
110 J. W. H. Zijp, Rec. Trav. Chim. Pays-Bas, 75 (1956) 1129.
111 J. W. H. Zijp, Dissertation Technical University, Delft, 1955.
112 B. Sedlacek, Vapr. Pitaniya, 23 (1964) 8.
113 B. A. J. Sedlacek, Fette, Seifen, Anstrichm., 65 (1963) 915.
114 B. R. Roy, S. N. Mitra and P. N. Sen Gupta, Current Sci., 29 (1960) 132.
115 J. Pospišil and L. Tamir, Collect. Czech. Chem. Commun., 30 (1965) 1513.
116 R. B. Delves, J. Inst. Petrol., London, 48 (1962) 283.
117 B. J. Gedeon, T. Chu and S. Copeland, A.C.S. Rubber Div., 123rd Meeting 1983; Rubber Chem. Technol., 56 (1983) 1080.
118 T. S. Brodsky, Anal. Chem., 36 (1964) 996.
119 M. S. J. Dallas, J. Chromatogr., 17 (1965) 267.
120 L. S. Bark, R. J. T. Graham and D. McCormick, Talanta, 12 (1965) 122.121
121 E. J. Shellard, Lab. Pract., 13 (1964) 290.
122 B. Uchytil, J. Chromatogr., 93 (1974) 447.
123 G. Neubert, Z. Anal. Chem., 203 (1964) 265.
124 S. Ishikawa and G. Katsui, Bitamin, 30 (1964) 203.
125 J. Davidek and J. Porkorny, Rev. Univ. Ind. Santander, 4 (1962) 11.
126 J. Davidek and J. Porkorny, Z. Lebensm.-Unters.-Forsch., 115 (1961) 113.
127 C. D. Cook and R. C. Woolworth, J. Amer. Chem. Soc., 77 (1955) 1783.
128 T. Ywasa and K. Kamiya, Bunseki Kagaku (Jap. Anal.), 13 (1964) 966.
129 J. W. Copids, Peeveboom, Nature (London), 204 (1964) 748.
130 G. M. C. Higgins and G. P. McSweeney, Rubber Chem. Technol., 47 (1974) 1206.
131 J. R. Davis and F. W. Kam, Rubber Ind. (London), 86 (1968) 86.
132 R. Amos, J. Chromatogr., 31 (1967) 263.
133 G. Ivan and R. Ciutacu, J. Chromatogr., 88 (1974) 391.
134 R. Miksch and L. Prolss, Kaut. Gummi, 11 (1958) WT 133.
135 K. Nagasawa and K. Ohta, Bunseki Kagaku (Jap. Anal.), 16 (1967) 1285.
136 L. Sluzewska, Rocz. Panstw. Zakl. Hig., 20 (1969) 177, C.A. 71/50998t.
137 G. P. McSweeney, Rubber Ind. (London), 4 (1970) 243.
138 J. G. Kreiner and W. C. Warner, J. Chromatogr., 44 (1969) 315.
139 D. Simpson and B. C. Currel, Analyst (London), 96 (1971) 515.
140 R. S. Dobies, J. Chromatogr., 40 (1969) 110.
141 L. Novitskaya and N. Kazarinova, Zh. Anal. Khim., 28 (6) (1973) 1233.
142 British Standards 2782, British Standard Institution, London, Part 4, 1975, Method 434A.
143 K. C. Guven and N. Guven, Eczacilik Bul., 16 (6) (1974) 93.
144 L. Sluzewska, Roczn. panst. Zakl. Hig., 25 (5) (1974) 495.
145 D. T. Miles, Analyst (London), 99 (1974) 1184.
146 A. Alessandro, M. Nuti and G. G. Renzi, Melsunger Med. Mitt., 123 (2-3) (1973) 177.
147 J. H. P. Tyman and A. J. Matthews, Chem. Ind. (London), 17 (1977) 740.
148 W. Ooghe and D. Dekeyser, Farm. Tijdschr. Belg., 54 (1977) 331.
149 A. Dooms-Goossens, J. Pharm. Belg., 32 (1977) 213.
150 M. Tomaszewska, Chem. Anal. (Warsaw), 22 (1977) 159.
151 I. Lewandowska, Roczn. panst. W. Zakl. Hig., 27 (1976) 525.
152 T. Mizutani and T. Ohe, Eisei Kagaku (J. Hyg. Chem., 22 (1976) 1502.
153 T. S. Vasundhara and D. B. Parihar, Mikrochim. Acta, No. 3-4 (1976) 365.
154 N. N. Mikhailova and L. N. Smagina, Zh. anal. Khim., 31 (1976) 406.
155 G. Haesen and B. Le Goff, J. Chromatogr., 204 (1981) 385.
156 F. Camurati and A. Rizzolo, Riv. Ital. Sostanze Grasse, 56 (1979) 347.
157 P. Mancini, V. Delton and N. Gelsomini, Rass. Chim., 29 (1977) 107.
158 H. Mazur and I. Lewandowska, Rocz. Panstw. Zakl. Hig., 29 (1978) 401.
159 J. Strzebinska and A. Pobudejska-Piotrowska, Racz. Panstw. Zakl. Hig., 29 (1978) 73.
160 P. Van, H. Carlos and D. A. Dekeyser, J. Assoc. Offic. Anal. Chem., 64 (1981) 1331.

161 L. V. Dessel and J. Clement, Z. Levensm.-Unters.-Forsch., 139 (1969) 146.
162 S. C. Lee, Chemistry Taipei, 4 (1968) 155.
163 H. Woggon, W. J. Uhde and G. Zydek, Z. Lebensm.-Unters.-Forsch., 138 (1968) 169.
164 V. de Valdehita, T. Maria and M. Vicente, An. Bromatol., 23 (1971) 107.
165 H. D. McBride and D. H. Evans, Anal. Chem., 45 (1973) 446.
166 A. M. Phipps, J. Amer. Oil Chem. Soc., 50 (1973) 21.
167 G. W. Johnson and C. Vickers, Analyst (London), 98 (1973) 257.
168 H. Woggon and D. Jehle, Z. Lebensm.-Unters.-Forsch., 136 (1968) 77.
169 E. V. Yoshiro and J. Martel, Grasas Aceti, 18 (1967) 310.
170 V. B. Korchagin, G. B. Lokshin and V. I. Nirenberchik, Antibiotiki, 11 (1966) 1047.
171 J. Glavind and G. Holmer, J. Amer. Oil Chem. Soc., 44 (1967) 539.
172 I. Mitsev, J. Slavcheva and A. Popov, C.R. Acad. Bulg. Sci., 20 (1967) 693.
173 J. Davidek, G. Janicek and E. Davidkova, Z. Lebensm.-Unters.-Forsch., 131 (1967) 345.
174 I. Kapetanidis and A. Mirimanoff, Pharm. Acta Helv., 41 (1966) 680.
175 J. H. van der Neut and A. C. Maagdenberg, Plastics (London), 31 (1966) 66.
176 I. Rueda and G. Fernandez, Revta Plast., 24 (1973) 82.
177 C. B. Roberts and J. W. Swank, Anal. Chem., 36 (1964) 271.
178 Yu. D. Noshikov and V. N. Vitchinkina, Neftekhimiya, 5 (1965) 284.
179 C. Heft and D. Bockmann, Plaste Kautsch., 11 (1964) 624.
180 P. J. Porcaro, Anal. Chem., 36 (1964) 1664.
181 R. W. Freedman and G. O. Charlier, Anal. Chem., 36 (1964) 1880.
182 R. W. Wise and A. G. Sullivan, Rubber Chem. Technol., 35 (1962) 684.
183 A. H. Duvall and W. F. Tully, J. Chromatogr., 11 (1963) 38.
184 V. T. Brooks, Chem. Ind. (London), 42 (1959) 1317.
185 H. S. Knight and H. Seigel, Anal. Chem., 38 (1966) 1221.
186 D. W. Grant and G. H. Vaughan, Gas Chromatography, Butterworths, London, 1962, p. 305.
187 R. E. Long, G. C. Guvernator, Anal. Chem., 39 (1967) 1493.
188 L. J. Gaeta, E. W. Schleuter and A. G. Altenu, Rubber Age, 101 (1969) 47.
189 S. M. Patel, R. A. Hively and J. O. Cole, A.C.S. Rubber Div. 103rd Meeting, 1973; Abstr. Rubber Chem. Technol., 35 (1962) 684.
190 R. G. Buttery and B. N. Stuckey, J. Agr. Fuod Chem., 9 (1961) 283.
191 E. Schroeder and G. Rudolph, Plaste Kautsch., 1 (1963) 22.
192 E. L. Styskin, A. Ya. Gurvich and S. T. Kumak, Khim. Prom., 5 (1973) 359.
193 G. R. Lappin and J. Zannucci, Anal. Chem., 41 (1969) 2076.
194 J. A. Denning and J. A. Marshall, Analyst (London), 97 (1972) 710.
195 V. I. Repkina, M. B. Liktyushkina, R. V. Turovskaya, L. M. Latysheva and M. N. Volkotrub, Ind. Lab., 39 (1973) 1048; Zavod. Lab., 39 (1973) 792.
196 J. Singh and M. R. Lapointe, J. Ass. Offic, Anal. Chem., 57 (1974) 804.
197 L. M. L'vovich, V. V. Yakubenok, V. I. Kheifets, S. S. Kirvolapov, L. P. Pironenkov and N. G. Ershova, Ref. Zh. Khim., 19GD (1974) 21.
198 S. Husain, P. Kunzelmann and H. Schildknecht, J. Chromatogr., 137 (1977) 53.
199 A. Rogstad and R. Reinton, J. Amer. Oil Chem. Soc., 54 (1977) 282.
200 D. E. Diskina, T. Sh. Lidenka and B. N. Kononyuk, Zavod. Lab., 43 (1977) 1326.
201 T. Maruyama, I. Niiya and M. Imamura, Shokuhin Eiseigaku Zasshi, 18 (1977) 283.
202 E. Krasuska and W. Celler, J. Chromatogr., 147 (1978) 470.
203 S. Dilli and K. Robards, J. Chromatogr., 133 (1977) 363.
204 T. Gomes, Riv. Ital. Sostanze Grasse, 57 (1980) 385.
205 K. Isshiki, S. Tsumura and T. Watanabe, Agr. Biol. Chem., 44 (1980) 1601.
206 II. D. Spitz, J. Chromatogr., 190 (1980) 193.
207 A. I. Gerasimova, Z. B. Galieva and V. V. Simonov, Metody Anal. Kontrolya Proizvod. Khim. Promsti, (1977) 57.
208 D. A. Kline, F. L. Joe and T. Fazio, J. Ass. Offic. Anal. Chem., 61 (1978) 513.
209 M. B. Evans and R. Newton, Chromatographia, 12 (1979) 83.
210 R. Milina, J. Anal. Appl. Pyrol., 3 (1981) 179.
211 F. Friedli and B. Zimmerli, Mitt. Geb. Lebensmittelunters. Hyg., 73 (1982) 357.
212 E. Kardos, V. Kosljar, J. Hudec and P. Iika, Chemicke Zvesti, 22 (1968) 786.
213 I. Takemura, Bunseki Kagaku (Jap. Anal.), 20 (1971) 61.

214 E. L. Gurvich, E. L. Styskin, Ya. A. Gurvich and S. T. Kumok, Khim. Prom., No. 5 (1972), 359, Zavod. Lab., 39 (1973) 27.
215 R. E. Long and G. C. Guvernator, Anal. Chem., 39 (12) (1967) 1493.
216 N. A. Kudryavtseva, A. I. Tarasov, N. I. Lulova, L. A. Barabash and B. S. Tverskaya, Khim. Tekhnol. Topl. Masel, 19GD (1967) 18.
217 D. M. Takahashi, J. Ass. Offic. Anal. Chem., 50 (1967) 880.
218 P. S. Menon and V. S. Kulkarni, Indian J. Technol., 5 (1967) 168.
219 D. F. McCaulley, T. Fazio, J. W. Howard, F. N. DiCiurcio and J. Ives, J. Ass. Offic. Anal. Chem., 50 (1967) 243.
220 G. Guiochon and J. Henniker, Brit. Plastics, 34 (1964) 74.
221 R. P. Burford, J. K. Haken and J. A. Obita, J. Chromatogr., 268 (1983) 515.
222 R. Whitlock and S. Siggia, Separ. Purif. Methods, 3 (1974) 299.
223 G. J. Glading and J. K. Haken, J. Chromatogr., 157 (1978) 404.
224 R. E. Leith and J. J. Kirkland, Ind. Res., 12 (1970) 36.
225 J. Rotschova and J. Pospisil, J. Chromatogr., 211 (1981) 299.
226 B. Guenter and D. H. Juergen, Lebensmittelchem. Gerichtl. Chem., 36 (1982) 90.
227 U. Guergens and H. J. Doemling, Deutsch. Lebensm. Rundsch., 78 (1982) 49. C.A., 97 (169001)q.
228 T. L. Pugh, Akron Rubber Group Winter Meeting, Akron, OH, January 22, 1971, Paper No. 254.
229 G. Constante, Grases Aceti, 26 (1975) 150.
230 K. J. Hammond, J. Assoc. Public Anal., 16 (1978) 17.
231 R. G. Lichtenthaler and F. Ranfelt, J. Chromatogr., 149 (1978) 553.
232 J. M. Zehner, J. Chromatogr. Sci., 14 (1976) 326.
233 P. Kauffman, J. Chromatogr., 132 (1977) 356.
234 G. A. Pasteur, Anal. Chem., 49 (1977) 363.
235 G. B. Cox, J. Chromatogr., 116 (1976) 244.
236 J. F. Schabron and L. E. Fenska, Anal. Chem., 52 (1980) 1411.
237 B. D. Page, J. Ass. Offic. Anal. Chem., 62 (1979) 1239.
238 A. W. Archer, Anal. Chim. Acta, 128 (1981) 235.
239 M. Popl, I. Vít and F. Smejkal, J. Chromatogr., 213 (1981) 363.
240 J. Fahnrich, I. Vít, M. Popl and F. Smejkal, Chem. Prum., 32 (1982) 487.
241 M. Duval and Y. Giguere, J. Liquid Chromatogr., 5 (1982) 1847.
242 A. N. Masoud and Y. Cha, J. High Resolut. Chromatogr. Chromatogr. Commun., 5 (1982) 299.
243 J. J. Kirkland, Anal. Chem., 41 (1969) 218.
244 J. J. Kirkland, J. Chromatogr. Sci., 7 (1969) 7.
245 I. Halasz and P. Walking, J. Chromatogr. Sci., 7 (1969) 129.
246 New Developments in Chromatography, No. 1 Waters Assoc., Milford, MA, 1970.
247 J. J. Kirkland, J. Chromatogr. Sci., 7 (1969) 361.
248 I. Halasz, Eastern Analytical Symposium, New York, 1969.
249 C. C. Sweeley, R. Bentley, M. Makita and W. W. Wells, J. Amer. Chem. Soc., 85 (1963) 2497.
250 L. R. Snyder, Anal. Chem., 39 (1967) 698.
251 J. Protivová and J. Pospísil, J. Chromatogr., 88 (1974) 99.
252 R. E. Majors and E. L. Johnson, J. Chromatogr., 167 (1978) 17.
253 A. P. Colburn and R. L. Pigford, in H. J. Perry (Editor), Chemical Engineers Hand Book, 3rd Ed., McGraw Hill, New York, 1980, p. 538.
254 T. Yoshikova and K. Kimura, J. Appl. Polym. Sci., 15 (1971) 2513.
255 G. D. Edwards, J. Polym. Sci., Part C, 21 (1967) 105.
256 J. G. Henrickson and J. C. Moore, J. Polym. Sci. Part A-1, 4 (1966) 167.
257 J. Coupek, M. Pokorny and J. Pospišil, IUPAC Symp on Macromolecules, Prague, September, 1972.
258 R. B. Sleight, Chromatographia, 6 (1973) 3.

